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Preface

Machine learning used to be a niche area originating out of pattern classification
in electrical engineering and artificial intelligence in computer science. Today,
machine learning has grown into a very diverse discipline spanning a variety of
topics in mathematics, science, and engineering. Because of the widespread use
and increased power of computers, machine learning has found a plethora of
relevant applications in almost all engineering domains and has made a huge
impact on our society. In particular, with the boom of deep learning in recent
years, thousands of new researchers and practitioners across academia and
industry join forces every year to tackle machine learning and its applications.
In many universities, machine learning has become one of the most popular
advanced elective courses, highly demanded by senior undergraduates and
graduates in almost all computer science and electrical engineering programs.
The number of industrial job positions in machine learning, deep learning, and
data science has dramatically increased in recent years, and this trend is expected
to continue for at least the next 10 years due to the availability of a huge amount
of data over the internet and personal devices.

Why This Book?

There are already plenty of well-written textbooks for machine learning, most of
which exhaustively cover a wide range of topics in machine learning. In teaching
my machine learning courses, I found that they are too challenging for beginners
because of the vast range of presented topics and the overwhelming technical
details associated with them. Many beginners have trouble with the heavy
mathematical notation and equations, whereas others drown in all the technical
details and fail to grasp the essence of these machine learning methods.

In contrast, this book is intended to present the fundamental machine learning
concepts, algorithms, and principles in a concise and lucid manner, without
heavy mathematical machinery and excess detail. I have been selective in terms
of the topics so that it can all be covered in an introductory course, rather than
making it comprehensive enough to cover all machine learning topics. I chose
to cover only relatively mature topics primarily related to supervised learning,
which I believe are not only fundamental to the field of machine learning but
also significant enough to have made an impact in both academia and industry.
In other words, some satisfactory and feasible solutions have already been
developed for these topics so that they are able to address not just toy problems
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but many interesting problems arising in the real world. At the same time, I have
tried to omit many minor issues surrounding the central topics so that beginners
will not be distracted by these purely technical details.

Instead of covering the selected topics separately, one after another, I have tried
to organize all machine learning topics into a coherent structure to give readers
a big picture of the entire field. All topics are arranged into coherent groups, and
the individual chapters are dedicated to covering all logically relevant methods
in each group. After reading each chapter, readers can immediately understand
the differences between them, grasp their relevance, and also know how these
methods fit into the big picture of machine learning.

This book also aims to reflect the latest advancements in the field. I have included
significant coverage on several important recent techniques, such as transformers,
which have come to dominate many natural-language-processing tasks; batch
norm and ADAM optimization, which are popular in learning large and deep
neural networks; and recently popular deep generative models such as variational
autoencoders (VAEs) and generative adversarial nets (GANs).

For all topics in this book, I provide enough technical depth to explain the
motivation, principles, and methodology in a professional manner. As much
as possible, I derive the machine learning methods from scratch using rigorous
mathematics to highlight the core ideas behind them. For critical theoretical
results, I have included many important theorems and some light proofs. The
important mathematical topics and methods that modern machine learning
methods are built on are thoroughly reviewed in Chapter 2. However, readers
do need a good background in calculus, linear algebra, and probability and statistics
to be able to follow the descriptions and discussions in this book. Throughout
the book, I have also done my best to present all technical content using clean
and consistent mathematical notations and represent all algorithms in this book
as concise linear algebra formulas, which can be translated almost line by line
into efficient code using a programming language supporting vectorization,
such as MATLAB or Python.

Whom Is This Book For?

This book is primarily written as a textbook for an introductory course on
machine learning for senior undergraduate students in computer science and
computer/ software/electrical engineering programs or first-year graduate
students in many science, engineering, and applied mathematics programs who
are interested in basic machine learning methods for their own research problems.
I also hope it will be useful as a self-study or reference book for researchers who
wish to apply machine learning methods to solve their own problems, as well
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as industrial practitioners who want to understand the concepts and principles
behind the popular machine learning methods they implement. Given the large
number of machine learning software programs and toolkits freely available
today, it is often not hard to write code to run fairly complicated machine
learning algorithms. However, in many cases, knowledge of the principles and
mathematics behind these algorithms is required to tune these algorithms in
order to deliver optimal results for the task at hand.

Online Resources

This book is accompanied by the following GitHub repository:

https://github.com/iNCML/MachineLearningBook

This website provides a variety of supplementary materials to support this book,
including the following:

I Lecture slides per chapter
I Code samples for some lab projects (MATLAB or Python)

Meanwhile, readers and instructors can also provide their feedback, suggestions,
and comments on this book as issues through the GitHub repository. I will reply
to these requests as much as possible.

How to Use This Book

I have made much effort to keep this book succinct and only cover the most
important issues for each selected topic. I encourage readers to read all chap-
ters in order because I have tried my best to arrange a wide range of machine
learning topics in a coherent structure. For each machine learning method, I
have thoroughly covered the motivation, main ideas, concepts, methodology,
and algorithms in the main text and sometimes have left extensive issues and
extra technical details or extensions as chapter-end exercises. Readers may op-
tionally follow these links to work on these exercises and practice the main ideas
discussed in the text.

I For a Semester-Long Course
Instructors may use this book as the primary or alternate textbook for
a standard semester-long introductory course (about 10–12 weeks) on
machine learning in the fourth year of a computer science, engineering, or
applied mathematics program. I suggest covering the following topics in
order:

https://github.com/iNCML/MachineLearningBook
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• Chapter 1: Introduction (0.5 week)
• Chapter 2: Mathematical Foundation (1.5 weeks)
• Chapter 4: Feature Extraction (1 week)
• Chapter 5: Statistical Learning Theory (0.5 week)

◦ §5.1 Formulation of Discriminative Models
◦ §5.2 Learnability

• Chapter 6: Linear Models (1.5 weeks)
• Chapter 7: Learning Discriminative Models (1 week)

◦ §7.1 General Framework
◦ §7.2 Ridge and LASSO
◦ §7.3 Matrix Factorization

• Chapter 8: Neural Networks (2 weeks)
• Chapter 9: Ensemble Learning (1 week)
• Chapter 10: Overview of Generative Models (1 week)
• Chapter 11: Unimodal Models (1 week)

◦ §11.1 Gaussian Models
◦ §11.2 Multinomial Models
◦ §11.3 Markov Chain Models

• Chapter 12 Mixture Models (1 week)

◦ §12.1 Formulation
◦ §12.2 EM Method
◦ §12.3 Gaussian Mixture Models

I For a Year-Long Full Course
Instructors may also use this book as the primary or alternate textbook
for a year-long full course on machine learning (20–24 weeks) to give bal-
anced coverage of both discriminative and generative models. The first
half focuses on the mathematical preparation and discriminative mod-
els, whereas the second half gives full exposure to a variety of topics in
generative models, including Chapter 13: Entangled Models, Chapter 14:
Bayesian Learning, and Chapter 15: Graphical Models.
If time is tight, instructors may skip some optional topics, such as §4.3
Manifold Learning, §7.4 Dictionary Learning, §11.4 Generalized Linear
Models, §12.4 Hidden Markov Models, or §14.4 Gaussian Processes.

I For Self-Study
All self-study readers are strongly recommended to go through the book
in order. This will give a smooth transition from one topic to another,
generally progressing gradually from easy topics to hard ones. Depending
on one’s own interests, readers may choose to skip any of the following
advanced topics without affecting the understanding of other parts:
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• §4.3 Manifold Learning
• §7.4 Dictionary Learning
• §11.4 Generalized Linear Models
• §12.4 Hidden Markov Models
• §14.4 Gaussian Processes
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Notation

This list describes some of the symbols that are used within this book.

µ The mean vector of a multivariate Gaussian
Σ The covariance matrix of a multivariate Gaussian
E[ · ] The expectation or the mean
EX [ · ] The expectation with respect to X

H Model space
N The set of natural numbers
R The set of real numbers
Rn The set of n-dimensional real vectors
Rm×n The set of m × n real matrices
W The set of all parameters in a neural network
S The sample covariance matrix
w ∗ x The convolution sum of w and x
w · x The inner product of two vectors w and x
w � x The element-wise multiplication of w and x
W A weight matrix
w A weight vector
x A feature vector
∇ f (x) The gradient of a function f (x)
Pr(A) The probability of an event A

‖w‖ The norm (or L2 norm) of a vector w
‖w‖p The Lp norm of a vector w
f (x; θ) A function of x with the parameter θ
fθ(x) A function of x with the parameter θ
l(θ) A log-likelihood function of the model parameter θ
m � n m is much less than n

p(x, y) A joint distribution of x and y
p(y | x) A conditional distribution of y given x
pθ(x) A probability distribution of x with the parameter θ
Q(W; x) An objective function of the model parameters W given the data x
θ Model parameter



xviii Notation

Summary of the General Notation Rules

Notation Meaning Examples

Lowercase letters A scalar x, y, n, m, xi , xi j
A function f (·), p(·), g(·), h(·)

Lowercase letters A column vector w, x, y, z, a, b
in bold µ, ν

Uppercase letters A random variable X , Y , Xi , Xj

A function Q(·), Φ(·, ·)

Uppercase letters A matrix A, W, S
in bold Σ, Φ

Uppercase letters A set of numbers N, R

in blackboard bold A set of parameters B, W, V

Uppercase letters A set of data D, DN

in calligraphy
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This first chapter briefly reviews how the field of machine learning has
evolved into a major discipline in computer science and engineering in
the past decades. Afterward, it takes a descriptive approach and provides
some simple examples to introduce basic concepts and general principles
in machine learning to give readers a big picture of machine learning, as
well as some general expectations on the topics that will be covered in this
book. Finally, this introductory chapter concludes with a list of advanced
topics in machine learning, which are currently pursued as active research
topics in the machine learning community.

1.1 What Is Machine Learning?

The term artificial intelligence (AI) was coined
at a workshop at Dartmouth College in
1956 by John McCarthy, who was an MIT
computer scientist and a founder of the
AI field.

Since its inception several decades ago, the digital computer has constantly
amazed us with its unprecedented capability for computation and data
storage. On the other hand, people are also extremely interested in investi-
gating the limits on what a computer is able to do beyond the basic skills
of computing and storing. The most interesting question along this line is
whether the human-made machinery of digital computers can perform
complex tasks that normally require human intelligence. For example,
can computers be taught to play complex board games like chess and Go,
transcribe and understand human speech, translate text documents from
one language to another, and autonomously operate cars? These research
pursuits have been normally categorized as a broad discipline in com-
puter science and engineering under the umbrella of artificial intelligence
(AI). However, artificial intelligence is a loosely defined term and is used
colloquially to describe computers that mimic cognitive functions associ-
ated with the human mind, such as learning, perception, reasoning, and
problem solving [207]. Traditionally, we tended to follow the same idea of
computer programming to tackle an AI task because it was believed that
we could write a large program to teach a computer to accomplish any
complex task. Roughly speaking, such a program is essentially composed
of a large number of "if-then" statements that are used to instruct the
computer to take certain actions under certain conditions. These if-then
statements are often called rules. All rules in an AI system are collectively
called a knowledge base because they are often handcrafted based on the
knowledge of human experts. Furthermore, some mathematical tools,
such as logic and graphs, can also be adopted into some AI systems as
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more advanced methods for knowledge representation. Once the knowl-
edge base is established, some well-known search strategies can be used
to explore all available rules in the knowledge base to make decisions
for each observation. These methods are often called symbolic approaches
[207]. Symbolic approaches were dominant in the early stage of AI because
mathematically sound inference algorithms can be used to derive some
highly explainable results through a transparent decision process, such as
the expert systems popular in the 1970s and 1980s [110].

The key to the success of these knowledge-based (or rule-based) symbolic
approaches lies in how to construct all necessary rules in the knowledge
base. Unfortunately, this has turned out to be an insurmountable obstacle
for any realistic task. First of all, the process of explicitly articulating hu-
man knowledge using some well-formulated rules is not straightforward.
For example, when you see a picture of a cat, you can immediately rec-
ognize a cat, but it is difficult to express what rules you might have used
to make your judgment. Second, the real world is often so complicated
that it requires using an endless number of rules to cover all the different
conditions in any realistic scenario. Constructing these rules manually is
a tedious and daunting task. Third, even worse, as the number of rules
increases in the knowledge base, it becomes impossible to maintain them.
For example, some rules may contradict each other under some conditions,
and we often have no good ways to detect these contradictions in a large
knowledge base. Moreover, whenever we need to make an adjustment to a
particular rule, this change may affect many other rules, which are not easy
to identify as well. Fourth, rule-based symbolic systems do not know how
to make decisions based on partial information and often fail to handle
uncertainty in the decision-making process. As we know, neither partial
information nor uncertainty is a major hurdle in human intelligence.

The term machine learning was first coined
in a 1959 paper [212] by Arthur Samuel,
who was an IBM researcher and pioneer
in the field of AI.

On the other hand, an alternative approach toward AI is to design learning
algorithms by which computers can automatically improve their capabil-
ity on any particular AI task through experience [165]. The past experience
is fed to a learning algorithm as the so-called "training data" for the al-
gorithm to learn from. The design of these learning algorithms has been
motivated by different strategies, from biologically inspired learning ma-
chines [200, 206, 205] to probability-based statistical learning methods
[56, 9, 112, 38]. Since the 1980s, the study of these automatic learning
algorithms has quickly emerged as a prominent subfield in AI, under the
name machine learning. The nature of automatic learning prevents machine
learning from suffering the aforementioned drawbacks of the symbolic
approaches. As opposed to the knowledge-based symbolic approaches,
data-driven machine learning algorithms focus more on how to automat-
ically exploit the training data to build some mathematical models in
order to make decisions without having explicit programming to do so
[212]. With the help of machine learning algorithms, the major burden in
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building an AI system has moved from the extremely challenging task
of manual knowledge representation to a relatively feasible procedure of
data collection. After initial success in some real-world AI applications
during the 1970s and 1980s (e.g., speech recognition [9, 112] and machine
translation [38]), a major paradigm shift occurred in the field of artificial
intelligence—namely, the data-driven machine learning methods have
replaced the traditional rule-based symbolic approaches to become the
mainstream methodology for AI. As the computation power of modern
computers constantly improves, machine learning has found a plethora of
relevant applications in almost all engineering domains and has made a
huge impact on our society.

Figure 1.1: An illustration of the pipeline
of building a machine learning system,
consisting of three major steps of data
collection, feature generation, and model
training.

A recent trend in machine learning is to re-
place the handcrafted features with some
automatic feature extraction algorithms.
The recent end-to-end learning tends to com-
bine the last two steps of feature extrac-
tion and modeling into a single uniform
module that can be jointly learned from
the training data. We will discuss the end-
to-end learning in Section 8.5.

As shown in Figure 1.1, the pipeline of building a successful machine
learning system normally consists of three key steps. In the first stage, we
need to collect a sufficient amount of training data to represent the previ-
ous experience from which computers can learn. Ideally, the training data
should be collected under the same conditions in which the system will
be eventually deployed. The data collected in this way are often called in-
domain data. Many learning algorithms also require human annotators to
manually label the data in such a way to facilitate the learning algorithms.
As a result, it is a fairly costly process to collect in-domain training data
in practice. However, the final performance of a machine learning system
in any practical task is largely determined by the amount of available in-
domain training data. In most cases, accessing more in-domain data is the
most effective way to boost performance for any real-world application.
In the second stage, we usually need to apply some domain-specific pro-
cedures to extract the so-called features out of the raw data. The features
should be compact but also retain the most important information in the
raw data. The feature-extraction procedures need to be manually designed
based on the nature of the data and the domain knowledge, and they often
vary from one domain to another. For example, a good feature to represent
speech signals should be derived based on our understanding of speech
itself, and it should drastically differ from a good feature to represent an
image. In the final stage, we choose a learning algorithm to build some
mathematical models from the extracted feature representations of the
training data. The machine learning research in the past few decades has
provided us with a wide range of choices in terms of which learning algo-
rithms to use and which models to build. The main purpose of this book is
to introduce different choices of machine learning methods in a systematic
way. Most of these learning methods are generic enough for a variety of
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machine learning
input output

Figure 1.2: A system view of any machine
learning problem.

problems and applications, and they are usually independent of domain
knowledge. Therefore, most learning methods and their corresponding
models can be introduced in a general manner without restricting their
use to any particular application.

1.2 Basic Concepts in Machine Learning

In this section, we will use some simple examples to explain some common
terminology, as well as several basic concepts widely used in machine
learning.

Generally speaking, it is useful to take the system view of input and out-
put to examine any machine learning problem, as shown in Figure 1.2. For
any machine learning problem at hand, it is important to understand what
its input and output are, respectively. For example, in a speech-recognition
problem, the system’s input is speech signals captured by a microphone,
and the output is the words/sentences embedded in the signals. In an
English-to-French machine translation problem, the input is a text docu-
ment in English, and the output is the corresponding French translation.
In a self-driving problem, the input is the videos and signals of the sur-
rounding scenes of the car, captured by cameras and various sensors, and
the output is the control signals generated to guide the steering wheel and
brakes.

The system view in Figure 1.2 can also help us explain several popular
machine learning terminologies.

1.2.1 Classification versus Regression

Depending on the type of the system outputs, machine learning prob-
lems can be broken down into two major categories. If the output is
continuous—namely, it can take any real value within an interval—it is a
regression problem. On the other hand, if the output is discrete—namely,
it can only take a value out of a finite number of predefined choices—it
is said to be a classification problem. For instance, speech recognition is
a classification problem because the output must be constructed using a
finite number of words allowed in the language. On the other hand, image
generation is a regression problem because the pixels of an output image
can take any arbitrary values. It is fundamentally similar in principle to
solve classification and regression problems, but they often need slightly
different treatments in problem formulation.

In some machine learning problems, the
outputs are structured objects. These prob-
lems are referred to as structured learning
(a.k.a. structured prediction) [10]. Some ex-
amples are when the output is a binary
tree or a sentence following certain gram-
mar rules.
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1.2.2 Supervised versus Unsupervised Learning

As we know, all machine learning methods require collecting training
data in the first place. Supervised learning deals with those problems where
both the input and output shown in Figure 1.2 can be accessed in data
collection. In other words, the training data in supervised learning consist
of input–output pairs. For each input in the training data, we know its
corresponding output, which can be used to guide learning algorithms
as a supervision signal. Supervised learning methods are well studied in
machine learning and usually guarantee good performance, as long as
sufficient numbers of input–output pairs are available. However, collecting
the input–output pairs for supervised learning often requires human
annotation, which may be expensive in practice.

In contrast, unsupervised learning methods deal with the problems where
we can only access the input shown in Figure 1.2 when collecting the
training data. A good unsupervised learning algorithm should be able to
figure out some criteria to group similar inputs together using only the
information of all possible inputs, where two inputs are said to be similar
only when they are expected to yield the same output label. The funda-
mental difficulty in unsupervised learning lies in how to know which
inputs are similar when their output labels are unavailable. Unsupervised
learning is a much harder problem because of the lack of supervision infor-
mation. In unsupervised learning, it is usually cheaper to collect training
data because it does not require extra human efforts to label each input
with the corresponding output. However, unsupervised learning largely
remains an open problem in machine learning. We desperately need good
unsupervised learning strategies that can effectively learn from unlabeled
data.

In many circumstances, unsupervised learn-
ing is also called clustering [66].

In between these two extremes, we can combine a small amount of labeled
data with a large amount of unlabeled data during training. These learning
methods are often called semisupervised learning. In other cases, if the true
outputs shown in Figure 1.2 are too difficult or expensive to obtain, we can
use other readily available information, which is only partially relevant
to the true outputs, as some weak supervision signals in learning. These
methods are called weakly supervised learning.

We know that it is difficult and costly
to annotate the precise meaning of each
word in text documents. However, due to
the distribution hypothesis [91] in linguis-
tics (i.e., "words that are close in meaning
will occur in similar pieces of text"), the
surrounding words can be used as weak
supervision signals to learn the meanings
of words. See Example 7.3.2.

1.2.3 Simple versus Complex Models

In machine learning, we run learning algorithms over training data to
build some mathematical models for decision making. In terms of choos-
ing the specific model to be used in learning, we usually have to make a
sensible choice between simple models and complex models. The com-
plexity of a model depends on the functional form of the model as well
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Figure 1.3: An illustration of a curve-
fitting problem, which can be viewed as a
regression problem in machine learning.

Figure 1.4: An illustration of using a lin-
ear model for the curve-fitting problem
shown in Figure 1.3.

as the number of free parameters. In general, linear models are treated as
simple models, whereas nonlinear models are viewed as complex models
because nonlinear models can capture much more complicated patterns
in data distributions than linear ones. A simple model requires much less
computing resources and can be reliably learned from a much smaller
training set. In many cases, we can derive a full theoretical analysis for
simple models, which gives us a better understanding of the underlying
learning process. However, the performance of simple models often satu-
rates quickly as more training data become available. In many practical
cases, simple models can only yield mediocre performance because they
fail to handle complicated patterns, which are the norm in almost all real-
world applications. On the other hand, complex models require much
more computing resources in learning, and we need to prepare much more
training data to reliably learn them. Due to their complex functional forms,
there does not exist any theoretical analysis for many complex models.
Hence, learning complex models is often a very awkward black-box pro-
cess and usually requires many inexplicable tricks to yield optimal results.

We will introduce linear models in Chap-
ter 6 and more complex models in Chap-
ter 8.

Example 1.2.1 Curve Fitting

There exists an unknown function y = f (x). Assume we can only ob-
serve its function values at several isolated points, indicated by blue
circles in Figure 1.3. Show how to determine its values for all other
points in the interval.

This is a standard curve-fitting problem in mathematics, which requires
constructing a curve, or mathematical function, to best fit these observed
points. From the perspective of machine learning, this curve-fitting prob-
lem is a regression problem because it requires us to estimate the function
value y, which is continuous, for any x in the interval. The observed points
serve as the training data for this regression problem. Because we can
access both input x and output y in the training data, it is a supervised
learning problem.

First of all, assume we construct a linear function for this problem:

f (x) = a0 + a1 x.

Through a learning process that determines the two unknown coefficients
(to be introduced in the later chapters), we can construct the best-fit linear
function in Figure 1.4. We can see that this best-fit linear function yields
values quite different from most of the observed points and has failed to
capture the "up-and-down wiggly pattern" shown in the training data.
This indicates that linear models may be too simple for this task. In fact,
this problem can be easily solved by choosing a more complex model. A
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Figure 1.5: An illustration of using a
fourth-order polynomial function for the
curve-fitting problem.

Figure 1.6: An illustration of using a deci-
sion tree to recognize various fruits based
on some measured features. (Source:
[57].)

natural choice here is to use a higher-order polynomial function. We can
choose a fourth-order polynomial function, as follows:

f (x) = a0 + a1 x + a2 x2 + a3 x3 + a4 x4.

After we determine all five unknown coefficients, we can find the best-fit
fourth-order polynomial function, as shown in Figure 1.5. From that, we
can see that this model captures the pattern in the data much better despite
still yielding slightly different values at the observed points. �

Example 1.2.2 Fruits Recognition

Assume we want to teach a computer to recognize different fruits based
on some observed characteristics, such as size, color, shape, and taste.
Consider a suitable model that can be used for this purpose.

This is a typical classification problem because the output is discrete: it
must be a known fruit (e.g., apple, grape). Among many choices, we can
implement the tree-structured model shown in Figure 1.6 for this clas-
sification problem. In this model, each internal node is associated with
a binary question regarding one aspect of the characteristics, and each
leaf node corresponds to one class of fruits. For each unknown object, the
decision process is simple: We start from the root node and ask the associ-
ated question for the unknown object. We then move down to a different
child node based on the answer to this question. This process is repeated
until a leaf node is reached. The class label of the reached leaf node is the
classification result for the unknown object. This model is normally called
a decision tree in the literature [34]. If this tree is manually constructed
according to human knowledge, it is just a convenient way to represent
various rules in a knowledge base. However, if we can automatically learn
such a tree model from training data, it is considered to be an interesting
method in machine learning, known as decision trees. � We will introduce various learning meth-

ods for decision trees in Chapter 9.

1.2.4 Parametric versus Nonparametric Models

When we choose a model for a machine learning problem, there are two
different types. The so-called parametric models (a.k.a. finite-dimensional mod-
els) are models that take a presumed functional form and are completely
determined by a fixed set of model parameters. In the previous curve-
fitting example, once we choose to use a linear model (or a fourth-order
polynomial model), it can be fully specified by two (or five) coefficients.
By definition, both linear and polynomial models are parametric models.
In contrast, the so-called nonparametric models (a.k.a. distribution-free models)
do not assume the functional form of the underlying model, and more
importantly, the complexity of such a model is not fixed and may depend
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on the available data. In other words, a nonparametric model cannot be
fully specified by a fixed number of parameters. For example, the decision
tree is a typical nonparametric model. When we use a decision tree, we
do not presume the functional form of the model, and the tree size is
usually not fixed as well. If we have more training data, it may allow us to
build a larger decision tree. Another well-known nonparametric model is
the histogram. When we use a histogram to estimate a data distribution,
we do not constrain the shape of the distribution, and the histogram can
dramatically change as more and more samples become available.

Generally speaking, it is easier to handle parametric models than non-
parametric models because we can always focus on estimating a fixed
set of parameters for any parametric model. Parameter estimation is al-
ways a much simpler problem than estimating an arbitrary model without
knowing of its form.

1.2.5 Overfitting versus Underfitting

Figure 1.7: An illustration of how data
can be conceptually viewed as being com-
posed of signal and noise components.

All machine learning methods rely on training data. Intuitively speaking,
training data contain the important information on certain regularities we
want to learn with a model, which we informally call the signal component.
On the other hand, training data also inevitably include some irrelevant
or even distracting information, called the noise component. A major
source of noise is the sampling variations exhibited in any finite set of
random samples. If we randomly draw some samples, even from the same
distribution, twice, we will not obtain identical samples. This variation
can be conceptually viewed as a noise component in the collected data.
Of course, noise may also come from measurement or recording errors.
In general, we can conceptually represent any collected training data as a
combination of two components:

data = signal + noise.

This decomposition concept is also illustrated in Figure 1.7, where we
can see that the signal component represents some regularities in the
data, whereas the noise component represents some unpredictable, highly
fluctuating residuals. Once we have this conceptual view in mind, we can
easily understand two important concepts in machine learning, namely,
underfitting and overfitting.

We will formally introduce the theory be-
hind overfitting in Chapter 5.
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Figure 1.8: An illustration of using a 10th-
order polynomial function for the pre-
vious curve-fitting problem. The best-fit
model behaves wildly because the over-
fitting happened in the learning process.

Assume we learn a simple model from a set of training data. If the used
model is too simple to capture all regularities in the signal component, the
learned model will yield very poor results even in the training data, not to
mention any unseen data, which is normally called underfitting. Figure 1.4
clearly shows an underfitting case, where a linear function is too simple
to capture the "up-and-down wiggly pattern" evident in the given data
points. On the other hand, if the used model is too complex, the learning
process may force a powerful model to perfectly fit the random noise
component while trying to catch the regularities in the signal component.
Moreover, perfectly fitting the noise component may obstruct the model
from capturing all regularities in the signal component because the highly
fluctuating noise can distract the learning outcome more when a complex
model is used. Even worse, it is useless to perfectly fit the noise component
because we will face a completely different noise component in another set
of data samples. This will lead to the notorious phenomenon of overfitting
in machine learning. Continuing with the curve fitting as an example,
assume that we use a 10th-order polynomial to fit the given data points
in Figure 1.3. After we learn all 11 coefficients, we can create the best-fit
10th-order polynomial model shown in Figure 1.8. As we can see, this
model perfectly fits all given training samples but behaves wildly. Our
intuition tells us that it yields a much poorer explanation of the data than
the model in Figure 1.5.

Figure 1.9: An illustration of underfitting
and overfitting in a binary classification
problem of two classes; the colors indicate
class labels.

Not limited to regression, underfitting and overfitting can also occur
in classification problems. In the simple classification problem of two
classes shown in Figure 1.9, if a simple model is used for learning, it
leads to a straight separation boundary between the two classes in the left
figure, indicating an underfitting case because many training samples are
located on the wrong side of the boundary. On the other hand, if we use a
complex model in learning, it may end up with the complicated separation
boundary shown in the middle figure. This implies an overfitting case
because this boundary perfectly separates all training samples but is not
a natural explanation of the data. Finally, among these three cases, the
model on the right seems to provide the best explanation of the data set.

We should avoid underfitting and overfitting as much as possible in any
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Figure 1.10: An illustration of high bias
errors versus high variances in machine
learning, where each square represents a
learned model from a random training
set, and the center of the circles indicates
the true regularities to be learned. (Im-
age credit: Sebastian Raschka/CC-BY-SA-
4.0.)

machine learning problem because they both hurt the learning perfor-
mance in one way or another. Underfitting occurs when the learning
performance is not satisfactory even in the training set. We can easily
get rid of the underfitting problem by increasing the model complexity
(i.e., either increasing the number of free parameters or changing to a
more complex model). On the other hand, we can identify the overfitting
problem if we notice a nearly perfect performance in the training set but a
fairly poor performance in another unseen evaluation set.We will formally discuss regularization in

Chapter 7.
Similarly, we

can mitigate overfitting in machine learning either by augmenting more
training data, or by reducing the model complexity, or by using so-called
regularization techniques during the learning process.

1.2.6 Bias–Variance Trade-Off

Generally speaking, the total expected error of a machine learning algo-
rithm on an unseen data set can be decomposed into the following two
sources:

I Bias due to underfitting:
The bias error quantifies the inability of a learned model to capture all
regularities in the signal component due to erroneous assumptions
in the used model. High biases indicate that the learned model
consistently misses some important regularities in the data because
of inherent weaknesses of the underlying method. As shown in
Figure 1.10, each red square conceptually indicates a learned model
obtained by running the same learning method on a random training
set of equal size. A high bias error implies that the learned model
yields a poor match with the regularities in the signal component
that are truly relevant to the learning goal.

I Variance due to overfitting:
Variance is the error arising from the learning sensitivity to small
fluctuations in the training data. In other words, variance quantifies
the overfitting error of a learning method when the learned model is
forced to mistakenly capture the randomness in the noise component.
As shown in Figure 1.10, when variance is high, all learning results
randomly deviate from the true target in a different way because
each training set contains a different noise component. High vari-
ance indicates that the learned model gives a weak match with the
regularities in the signal component as it randomly deviates from
the true learning target from one case to another.

In precise terms, we can show that the average error of a learning algo-
rithm can be mathematically decomposed as follows:

We will formally prove the bias and vari-
ance decomposition

error = bias2 + variance.

in Example 2.2.2. learning error = bias2 + variance
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Figure 1.11: An illustration of how to
manage the bias–variance trade-off by
choosing the optimal model complexity
in machine learning.

As shown in Figure 1.11, when we have chosen a particular method to
learn for a given problem from a fixed amount of training data, we cannot
reduce the two sources of error at the same time. When we choose a simple
model, it usually yields a low variance but a high bias error as a result
of underfitting. On the other hand, when we choose a complex model,
it can reduce the bias error but leads to higher variance as a result of
overfitting. This phenomenon is often called the bias–variance trade-off in
machine learning. For any particular learning problem, we can usually
adjust the model complexity to find the optimal model choice that results
in the lowest total learning error.

1.3 General Principles in Machine Learning

In this section, we will cover several general principles in machine learn-
ing, providing important insights necessary for understanding some fun-
damental ideas in machine learning.

1.3.1 Occam’s Razor

Occam’s razor is a general problem-solving principle in philosophy and
science. It is sometimes paraphrased by a statement akin to "the simplest
solution is most likely the right one." In the context of machine learning,
Occam’s razor means a preference for simplicity in model selection. If two
different models are observed to yield similar performance on training
data, we should prefer the simpler model to the more complicated one.
Moreover, the principle of minimum description length (MDL) [198] is a
formalization of Occam’s razor in machine learning, which states that all
machine learning methods aim to find regularities in data, and the best
model (or hypothesis) to describe the regularities in data is also the one
that can compress the data the most.

1.3.2 No-Free-Lunch Theorem

In the context of machine learning, the no-free-lunch theorem [253, 57, 220]
states that no learning method is universally superior to other methods
for all possible learning problems. Given any two machine learning al-
gorithms, if we use them to learn all possible learning problems we can
imagine, the average performance of these two algorithms must be the
same. Or even worse, their average performance is no better than random
guessing.
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Figure 1.12: An illustration of the no-free-
lunch theorem in a simple curve-fitting
problem: when an estimated model (red
curve) is used to predict function values
at x1 and x2, it works well for some target
functions (green dots), but meanwhile, it
will work poorly for other functions (red
squares).

Figure 1.13: An illustration of why the
law of the smooth world can simplify a
machine learning problem.

We can use the earlier curve-fitting problem as an example to explain why
the no-free-lunch theorem makes sense. Given the training samples in
Figure 1.3, our goal is to create a model to predict function values for other
x points. No matter what learning method we use, we eventually end up
with an estimated model, such as the red curve in Figure 1.12. Because
we have no knowledge of the ground-truth function y = f (x) other than
the training samples, theoretically speaking, the ground-truth function
y = f (x) could take any arbitrary value for a new point, which is not in the
training set. When we use the estimated model to predict function values
at some new points, say, x1 and x2, it is easy to see that the estimated
model yields a good prediction if the ground-truth function y = f (x)
happens to yield "good" values (as indicated by green dots in Figure 1.12).
However, we can always imagine another scenario where the ground-
truth function yields "bad" values (as indicated by red squares in Figure
1.12), for which the estimated model will give a very poor prediction. This
is true no matter what learning algorithm we use to estimate the model. If
we average the prediction performance of any estimated model over all
possible scenarios for the ground-truth function, the average performance
is close to a random guess because for each good-prediction case, we can
also come up with any number of bad-prediction cases.

The no-free-lunch theorem simply says that no machine learning algorithm
can learn anything useful merely from the training data. If a machine
learning method works well for some problems, the method must have
explicitly or implicitly used other knowledge of the underlying problems
beyond the training data.

1.3.3 Law of the Smooth World

Despite the aforementioned no-free-lunch theorem, a fundamental reason
why many machine learning methods thrive in practice is that our physical
world is always smooth. Because of the hard constraints that exist in reality,
such as energy and power, any physical process in the macro world is
smooth in nature (e.g., audios, images, videos). Furthermore, our intuition
and perception are all built on top of the law of the smooth world. Therefore,
if we use machine learning to tackle any problems arising from the real
world, the law of the smooth world is always applicable, dramatically
simplifying many of our learning problems at hand.

For example, as shown in Figure 1.13, assume that a training set contains
some measurements of a physical process at three points in the space, that
is, x, y, and z, where x and y are located far apart, whereas x and z are
close by. If we need to learn a model to predict the process in the yellow
region between x and y, it is a hard problem because the training data
do not provide any information for this, and many unpredictable things
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Figure 1.14: An illustration of the deci-
sion boundary of the k-nearest neighbors
(k-NN) algorithm for classification:
Top panel: Three-class data (labeled by
color). Middle panel: Boundary of 1-NN
(k = 1). Bottom panel: Boundary of 5-NN
(k = 5). (Image credit: Agor153/CC-BY-
SA-3.0.)

could happen within such a wide range. On the other hand, if we need to
predict this process in the blue region between two nearby points, it should
be relatively simple because the law of the smooth world significantly
restricts the behavior of the process within such a narrow region given
the two observations at x and z. In fact, some machine learning models
can be built to give fairly accurate predictions in the blue region by simply
interpolating these two observations at x and z. The exact prediction
accuracy actually depends on the smoothness of the underlying process.
In machine learning, such smoothness is often mathematically quantified
using the concept of Lipschitz continuity (see margin note) or a more recent
notion of bandlimitedness [115].

A function f (x) is said to be Lipschitz con-
tinuous if there exists a real constant L > 0,
for any two x1 and x2, where�� f (x1) − f (x2)

�� ≤ L
��x1 − x2

��
always holds.

Moreover, let us go back to the no-free-lunch example in Figure 1.12. If
we have enough training samples to ensure that the gaps between all
samples are small enough, then many "bad" values as assumed by the
no-free-lunch theorem will not actually occur in practice because they
violate the law of the smooth world. As a result, when we only average all
plausible scenarios in practice, suitable machine learning methods achieve
much better prediction accuracy than random guessing.

Furthermore, the law of the smooth world immediately suggests a simple
strategy for machine learning. Given any unknown observation, if we
search over all known samples in the training set, the prediction for the
unknown can be made based on the nearest sample in the training set. This
leads to the famous nearest neighbors (NN) algorithm. In order to deal with
some possible outliers in the training set, this algorithm can be extended
to a more robust version, namely, the k-nearest neighbors (k-NN) algorithm.

Example 1.3.1 k-NN for Classification

For each unknown object, we search the whole training set to find
the top k nearest neighbors, where k is a small positive integer to be
manually specified beforehand. The class label of the unknown object is
determined by a majority vote of these k-NN. If we choose k = 1, the
object is simply assigned the class of the single nearest neighbor.

The k-NN method is conceptually simple and intuitive, and it can yield
the decision boundary in the entire space based on any given training set,
as shown in Figure 1.14. In many cases, the simple k-NN method can yield
satisfactory classification performance. In general, the success of the k-NN
method depends on two factors:

I Whether we have a good similarity measure to properly compute the
distance between any two objects in the space. This topic is usually
studied in a subfield of machine learning called metric learning [255,
136].
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I Whether we have enough samples in the training set to sufficiently
cover all regions in the space.

In terms of how many samples are needed to ensure good performance
for the k-NN method, some theoretical analysis [220] has shown that if we
want to achieve an error rate below ε (0 < ε < 1), the minimum number
of training samples N required by the k-NN algorithm increases expo-
nentially with the dimensionality of the space, denoted as d, as follows:

See Exercise Q1.1.

N ∝
(√d
ε

)d+1
.

Assume we need 100 samples to achieve an error rate ε = 0.01 for a prob-
lem in a low-dimension space (e.g., d = 3). But for some similar problems
in a higher-dimensional space, we need a huge number of training sam-
ples in order to achieve the same performance. For example, we may need
roughly 2 × 108 training samples for a similar problem in a 10-dimension
space and about 7 × 10123 training samples for a similar problem in a 100-
dimension space. Obviously, these numbers are prohibitively large for any
practical system. This result shows that the k-NN method can effectively
solve problems in a low-dimensional space but will encounter challenges
when the dimensionality of problems increases. In fact, this problem is not
just limited to the k-NN method but implies another general principle in
machine learning, known as the curse of dimensionality. �

1.3.4 Curse of Dimensionality

In machine learning, the curse of dimensionality refers to the dilemma of
learning in high-dimensional spaces. As shown in the previous k-NN
example, as the dimensionality of learning problems grows, the volume of
the underlying space increases exponentially. This typically requires an ex-
ponentially increasing amount of training data and computing resources to
ensure the effectiveness of any learning methods. Moreover, our intuition
of the three-dimensional physical world often fails in high dimensions
[54]. The similarity-based reasoning breaks down in high dimensions as
the distance measures become unreliable and counterintuitive. For exam-
ple, if many samples are uniformly placed inside a unit hypercube in a
high-dimensional space, it is proven that most of these samples are closer
to a face of the hypercube than to their nearest neighbors.

However, the worst-case scenarios predicted by the curse of dimension-
ality normally occur when the data are uniformly distributed in high-
dimensional spaces. Most real-world learning problems involve high-
dimensional data, but the good news is that real-world data never spread
evenly throughout the high-dimensional spaces. This observation is often
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referred to as the blessing of nonuniformity [54]. The blessing of nonuni-
formity essentially allows us to be able to effectively learn these high-
dimensional problems using a reasonable amount of training data and
computing resources. A nonuniform data distribution suggests that all
dimensions of the data are not independent but highly correlated in such
a way that many dimensions are redundant. In other words, many dimen-
sions can be discarded without losing much information about the data
distribution. This idea motivates a group of machine learning methods
called dimensionality reduction. We will introduce various dimensionality-

reduction methods and manifold learning
in Chapter 4.

Alternatively, a nonuniform distribution
in a high-dimensional space also suggests that the real data are only con-
centrated in a linear subspace or a lower-dimensional nonlinear subspace,
which is often called a manifold. In machine learning, the so-called manifold
learning aims to identify such lower-dimensional topological spaces where
high-dimensional data are congregated.

1.4 Advanced Topics in Machine Learning

This book aims to introduce only the basic principles and methods of
machine learning, mainly focusing on the well-established supervised
learning methods. Chapter 3 further sketches out these topics. This section
briefly lists other advanced topics in machine learning that will not be
fully covered in this book. These short summaries serve as an entry point
for interested readers to further explore these topics in future study.

1.4.1 Reinforcement Learning

Reinforcement learning [234] is an area in machine learning that is concerned
with how to teach a computer agent to take the best possible actions in
a long interaction course with an unknown environment. Different from
the standard supervised learning, the learning agent in a reinforcement
learning setting does not receive any strong supervision from the envi-
ronment regarding what the best action is at each step. Instead, the agent
only occasionally receives some numerical rewards (positive or negative).
The goal in reinforcement learning is to learn what action should be taken
under each condition, often called policy, in order to maximize the notion
of a cumulative reward over the long term. Traditionally, some numerical
tables are used to represent the expected cumulative rewards of various
actions under each policy, leading to the so-called Q-learning [248]. More
recently, neural networks have been used as a function approximator to
compute the expected cumulative rewards. These methods are sometimes
called deep reinforcement learning (a.k.a. deep Q-learning) [166].
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Reinforcement learning represents a general learning framework, but it
is regarded as an extremely challenging task because a learning agent
must learn how to explore potentially huge search spaces only based
on weak reward signals. With the help of neural networks, the deep
reinforcement learning methods have recently achieved some notable
successes in several closed-ended gaming settings, such as Atari video
games [167] and the ancient board game Go [224], but it still remains
unclear how to extend these methods to cope with open-ended tasks in a
real-world environment.

1.4.2 Meta-Learning

The hyperparameters of a learning algo-
rithm are the parameters that must be
manually specified prior to automatic learn-
ing (e.g., the value of k in the k-NN algo-
rithm).

Meta-learning (a.k.a. learning to learn) is a subfield of machine learning
that studies how to design automatic learning algorithms to improve the
performance of existing learning algorithms or to learn the algorithm itself
based on some meta-data about previous learning experiments. The meta-
data may include hyperparameter settings, model structures (e.g., pipeline
compositions or network architectures), the learned model parameters,
accuracy, and training time, as well as other measurable properties of the
learning tasks [241]. Next, another optimizer, also called the meta-learner,
is used to learn from the meta-data in order to extract knowledge and
guide the search for optimal models for new tasks.

1.4.3 Causal Inference

As we know, humans often rationalize the world in terms of cause and
effect, that is, the so-called causal relations between variables or events.
On the other hand, typical machine learning methods can only examine
the statistical correlations in data. It is well known that correlation is not
equal to causation. Causal inference is an area of machine learning that
focuses on the process of drawing causal connections between variables
in order to gain a better understanding of the physical world [183, 184,
186].

1.4.4 Other Advanced Topics

Transfer learning [190] is another subfield in machine learning that focuses
on how to efficiently adapt an existing machine learning model, which has
learned to perform well in one domain, to a different but related domain.
Hence, it is also called domain adaption [143, 19], which was initially studied
extensively for speaker adaption in speech recognition in the 1980s [37, 77,
144].
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Online learning methods [105] focus on scenarios where training data
become available in a sequential order. In this case, each data sample is
used to update the model as soon as it becomes available. Ideally, an online
learning method does not need to store all previous data after the model
has been updated so that it can also be used in some learning problems
where it is computationally infeasible to train over the entire data set.

Active learning methods [219, 58] study a special case of machine learning
in which a learning algorithm can interactively query a teacher to obtain
necessary supervision information for desired inputs. The goal in active
learning is to make the best use of proactive queries in order to learn
models in the most efficient way.

Imitation learning techniques [106] aim to mimic human behaviors for a
given task. A learning agent is trained to perform a task from some demon-
strations by learning a mapping between observations and actions. Like
reinforcement learning, imitation learning also aims to learn how to make
a sequence of decisions in an unknown environment. The difference is that
it is learned by observing some demonstrations rather than maximizing
a cumulative reward. Therefore, imitation learning is often used in cases
where the proper reward signals are difficult to specify.
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Exercises

Q1.1 Is the k-NN method parametric or nonparametric? Explain why.

Q1.2 A real-valued function f (x) (x ∈ R) is said to be Lipschitz continuous if there exists a real constant L > 0,
for any two points x1 ∈ R and x2 ∈ R, where�� f (x1) − f (x2)

�� ≤ L |x1 − x2 |

always holds. If f (x) is differentiable, prove that f (x) is Lipschitz continuous if and only if�� f ′(x)�� ≤ L

holds for all x ∈ R.
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Before we dig into any particular machine learning method, we will first
review some important subjects in mathematics and statistics because they
form the foundation for almost all machine learning methods. In particular,
we will cover some relevant topics in linear algebra, probability and statistics,
information theory, and mathematical optimization. This chapter stresses the
mathematical knowledge that is required to understand the following
chapters, and meanwhile, it presents many examples to prepare readers
for the notation used in this book. Moreover, the coverage in this chapter
is intended to be as self-contained as possible so that readers can study
it without referring to other materials. All readers are encouraged to go
over this chapter first so as to become acquainted with the mathematical
background as well as the notation used in the book.

2.1 Linear Algebra

2.1.1 Vectors and Matrices

A scalar is a single number, often denoted by a lowercase letter, such as x
or n. We also use x ∈ R to indicate that x is a real-valued scalar and n ∈ N

for that n is a natural number. A vector is a list of numbers arranged in
order, denoted by a lowercase letter in bold, such as x or y. All numbers in
a vector can be aligned in a row or column, called a row vector or column
vector, accordingly. We use x ∈ Rn to indicate that x is an n-dimensional
vector containing n real numbers. This book adopts the convention of
writing a vector in a column, such as the following:

x =


x1

x2
...

xn


y =


y1

y2
...
ym


.

A matrix is a group of numbers arranged in a two-dimensional array, often
denoted by an uppercase letter in bold, such as A or B. For example,
a matrix containing m rows and n columns is called an m × n matrix,
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represented as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


.

We use A ∈ Rm×n to indicate that A is an m × n matrix containing all real
numbers.

Along the same lines, we can arrange a
group of numbers in a three-dimensional
or higher-dimensional array, which is of-
ten called a tensor.

2.1.2 Linear Transformation as Matrix Multiplication

A common question that beginners have is why we need vectors and
matrices and what we can do with them. We can easily spot that vectors
may be viewed as special matrices. However, it must be noted that vectors
and matrices represent very different concepts in mathematics. An n-
dimensional vector can be viewed as a point in an n-dimensional space
if we interpret each number in the vector as the coordinate along an axis.
Each axis in turn can be viewed as some measurement of one particular
characteristic of an object. In other words, vectors can be viewed as an
abstract way to represent objects in mathematics. On the other hand, a
matrix represents a motion of all points in a space (i.e., one particular way
to move any point in a space into a different position in another space).
Alternatively, a matrix can be viewed as a particular way to transform the
representations of objects from one space to another. More importantly,
the exact algorithm to implement such motion is to take advantage of a
matrix operation, called matrix multiplication, which is defined as shown
in Figure 2.1.

Figure 2.1: An illustration of how to im-
plement linear transformation using ma-
trix multiplication.

We denote this as y = Ax for short. Using the matrix multiplication, any
point x in the first space Rn is transformed into another point y in a
different space Rm. The exact mapping between x and y depends on all
numbers in the matrix A. If A is a square matrix in Rn×n, this mapping
can also be viewed as transforming one point x ∈ Rn into another point y
in the same space Rn.

However, this matrix multiplication cannot implement any arbitrary map-
ping between two spaces. The matrix multiplication actually can only
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Figure 2.2: An illustration of mapping a
point from one space Rn to another space
Rm through a linear transformation.

Figure 2.3: An illustration of composing
two linear transformations into another
linear transformation by matrix multipli-
cation.

implement a small subset of all possible mappings called linear transforma-
tions. As shown in Figure 2.2, a linear transformation is a mapping from
the first space Rn to another space Rm that must satisfy two conditions:
(i) the origin in Rn is mapped to the origin in Rm; (ii) every straight line
in Rn is always mapped to a straight line (or a single point) in Rm. Other
mappings that do not satisfy these two conditions are called nonlinear
transformations, which must be implemented by other methods rather than
matrix multiplication.

This matrix multiplication method can be done between two matrices. For
example, we can have the following:

We denote this as C = AB for short. Note that the column number of the
first matrix A must match the row number of the second matrix B so that
they can be multiplied together.

Conceptually speaking, this matrix multiplication corresponds to a compo-
sition of two linear transformations. As shown in Figure 2.3, A represents
a linear transformation from the first space Rn to the second space Rr ,
and B represents another linear transformation from the second space Rr

to the third space Rm. The matrix multiplication C = AB composes these
two transformations to derive a direct linear transformation from the first
space Rn to the third one Rm. Because this process has to go through the
same space in the middle, these two matrices must match each other in
their dimensions, as described previously.

2.1.3 Basic Matrix Operations

The transpose of a matrix A is an operator that flips the matrix over its
diagonal so that all rows become columns, and vice versa. The new matrix
is denoted as Aᵀ. If A is an m × n matrix, then Aᵀ will be an n ×m matrix.

A =



a11 a12 · · · · · · a1n
...

...
...

...
...

ai1 · · · ai j · · · ain
...

...
...

...
...

am1 am2 · · · · · · amn


=⇒ Aᵀ =



a11 a21 · · · · · · am1
...

...
...

...
...

a1i · · · aji · · · ami

...
...

...
...

...
a1n a2n · · · · · · amn
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w =


w1
w2
...
wn


=⇒ wᵀ =

[
w1 w2 · · · wn

]
.

For any square matrix A ∈ Rn×n, we can compute a real number for it,
called the determinant, denoted as |A| (∈ R). As we know, a square matrix
A represents a linear transformation from Rn to Rn, and it will transform
any unit hypercube in the original space into a polyhedron in the new
space. The determinant |A| represents the volume of the polyhedron in
the new space.

We have (
Aᵀ

)ᵀ
= A(

AB
)ᵀ
= BᵀAᵀ(

A ±B
)ᵀ
= Aᵀ ±Bᵀ

A square matrix A is symmetric if and
only if

Aᵀ = A.

I =



1 0 · · · 0

0 1
... 0

...
...

. . .
...

0 0 · · · 1


For any A ∈ Rn×n , we have

AI = IA = A.

We can verify that

|A−1 | =
1
|A |

.

We often use I to represent a special square matrix, called an identity matrix,
that has all 1s in its diagonal and 0s everywhere else. For a square matrix
A, if we can find another square matrix, denoted as A−1, that satisfies

A−1A = AA−1 = I,

we call A−1 the inverse matrix of A. We say A is invertible if its inverse
matrix A−1 exists.

The inner product between any two n-dimensional vectors (e.g., w ∈ Rn

and x ∈ Rn) is defined as the sum of all element-wise multiplications
between them, denoted as w · x (∈ R) . We can further represent the inner
product using the matrix transpose and multiplication as follows:

w =


w1
w2
...

wn


x =


x1
x2
...
xn



w · x ∆=
n∑
i=1

wi xi = wᵀx = xᵀw.

The norm of a vector w (a.k.a. the L2 norm), denoted as ‖w‖, is defined as
the square root of the inner product with itself. The meaning of the norm
‖w‖ represents the length of the vector w in the Euclidean space:

‖w‖2 = w ·w =
n∑
i=1

w2
i = wᵀw.

Example 2.1.1 Given two n-dimensional vectors, x ∈ Rn and z ∈ Rn,
and an n × n matrix A ∈ Rn×n, reparameterize the following norms
using matrix multiplication:

‖z − x‖2 and ‖z −Ax‖2.

‖z − x‖2 =
(
z − x

)ᵀ (z − x
)
=

(
zᵀ − xᵀ

) (
z − x

)
= zᵀz + xᵀx − 2 zᵀx.
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‖z −Ax‖2 =
(
z −Ax

)ᵀ (z −Ax
)
=

(
zᵀ − xᵀAᵀ

) (
z −Ax

)
= zᵀz + xᵀAᵀAx − 2 zᵀAx

�

We can verify:

zᵀx = xᵀz

zᵀAx = xᵀAᵀz

because we have the following:

1. Both sides of each question are sym-
metric to each other because trans-
posing the left-hand side leads to
the right.

2. All of them are actually scalars.

Example 2.1.2 Given an n-dimensional vector, x ∈ Rn, compare xᵀx
with x xᵀ.

We can first show that

xᵀx =
[
x1 x2 · · · xn

] 
x1
x2
...

xn


=

n∑
i=1

x2
i .

On the other hand, we have

x xᵀ =


x1
x2
...

xn


[
x1 x2 · · · xn

]
=


x2

1 x1x2 · · · x1xn
x1x2 x2

2 · · · x2xn
...

...
. . .

...
x1xn x2xn · · · x2

n


.

Therefore, x xᵀ is actually an n × n symmetric matrix. �

The trace of a square matrix A ∈ Rn×n is defined to be the sum of all
elements on the main diagonal of A, denoted as tr(A); we thus have

tr(A) =
n∑
i=1

aii .

We can verify that xᵀx = tr(x xᵀ) in this example.

For any two matrices, A ∈ Rm×n and B ∈
Rm×n , we can verify that

tr(AᵀB) = tr(ABᵀ)

= tr(BAᵀ) = tr(BᵀA)

=

m∑
i=1

n∑
j=1

ai jbi j .

For any two square matrices (i.e., X ∈
Rn×n and Y ∈ Rn×n), we can also verify

tr(XY) = tr(YX).

2.1.4 Eigenvalues and Eigenvectors

Given a square matrix A ∈ Rn×n, we can find a nonzero vector u ∈ Rn that
satisfies

A u = λ u,

where λ is a scalar. We call u an eigenvector of A, and λ is an eigenvalue
corresponding to u. As we have learned, a square matrix A can be viewed
as a linear transformation that maps any point in a space Rn into another
point in the same space. An eigenvector u represents a special point in
the space whose direction is not changed by this linear transformation.
Depending on the corresponding eigenvalue λ, it can be stretched or
contracted along the original direction. If the eigenvalue λ is negative, it
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is flipped into the opposite direction after the mapping. The eigenvalues
and eigenvectors are completely determined by matrix A itself and are
considered as an inherent characteristic of matrix A.

Example 2.1.3 Given A ∈ Rn×n, assume we can find n orthogonal
eigenvectors ui (i = 1, 2, · · · , n) as follows:

A ui = λi ui (assuming ‖ui ‖
2 = 1),

where λi is the eigenvalue corresponding to ui . Show that the matrix A
can be factorized.

Any two vectors, ui and u j , are orthogo-
nal if and only if

ui · u j = 0.

First, we align both sides of the equations column by column:


�� �� ��

Au1 Au2 · · · Aun�� �� ��
 =


�� �� ��

λ1u1 λ2u2 · · · λnun�� �� ��
 .

Next, we can move A out in the left-hand side and arrange the right-hand
side into two matrices according to the multiplication rule:

A diagonal matrix has nonzero elements
only on the main diagonal.

A

�� �� ��

u1 u2 · · · un�� �� ��
︸                     ︷︷                     ︸

U

=


�� �� ��

u1 u2 · · · un�� �� ��
︸                     ︷︷                     ︸

U


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

︸                    ︷︷                    ︸
Λ

,

where the matrix U ∈ Rn×n is constructed by using all eigenvectors as its
columns, and Λ ∈ Rn×n is a diagonal matrix with all eigenvalues aligned
on the main diagonal. Because all eigenvectors are normed to 1 and they
are orthogonal to each other, we have

uᵀi uj =

{
1 i = j
0 i , j

.

Therefore, we can show that UᵀU = I. This means that U−1 = Uᵀ. If we
multiply the previous equation by this from the right, we finally derive

A = UΛUᵀ.

�

A square matrix A ∈ Rn×n is said to be positive definite (or positive semidefi-
nite) if xᵀAx > 0 (or ≥ 0) holds for any x ∈ Rn, denoted as A � 0 (or A � 0).
A symmetric matrix A is positive definite (or semidefinite) if and only if
all of its eigenvalues are positive (or nonnegative).

The idea of eigenvalues can be extended
to nonsquare matrices, leading to the so-
called singular values. A nonsquare matrix
A ∈ Rm×n can be similarly factorized us-
ing the singular value decomposition (SVD)
method. (See Section 7.3 for more.)
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2.1.5 Matrix Calculus

In mathematics, matrix calculus is a specialized notation to conduct mul-
tivariate calculus with respect to vectors or matrices. If y is a function
involving all elements of a vector x (or a matrix A), then ∂y/∂x (or ∂y/∂A)
is defined as a vector (or a matrix) in the same size as x (or A), where
each element is defined as a partial derivative of y with respect to the
corresponding element in x (or A).

Assuming we are given

x =


x1
x2
...

xn


and A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


,

then we have

∂y

∂x
∆
=



∂y
∂x1
∂y
∂x2
...
∂y
∂xn


and

∂y

∂A
∆
=



∂y
∂a11

∂y
∂a12

· · ·
∂y
∂a1n

∂y
∂a21

∂y
∂a22

· · ·
∂y
∂a2n

...
...

. . .
...

∂y
∂am1

∂y
∂am2

· · ·
∂y

∂amn


.

Example 2.1.4 Given x ∈ Rn and A ∈ Rn×n, show the following identi-
ties:

∂

∂x

(
xᵀAx

)
= Ax +Aᵀx

∂

∂A

(
xᵀAx

)
= xxᵀ.

Let’s denote y = xᵀAx; we thus have

y =
[
x1 · · · xn

] 
a11 · · · a1n

...
. . .

...
an1 · · · ann



x1
...

xn

 =
n∑
i=1

n∑
j=1

xiai j xj .

For any t ∈
{
1, 2, · · · , n

}
, we have

∂y

∂xt
=

n∑
j=1

at j xj︸    ︷︷    ︸
when i=t

+

n∑
i=1

xiait︸    ︷︷    ︸
when j=t

.

If we denote Ax +Aᵀx as a column vector: Ax +Aᵀx =


z1
z2
...
zn

Ax +Aᵀx =
[
z1 z2 · · · zn

]ᵀ ,
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then for any t ∈
{
1, 2, · · · , n

}
, we can compute

zt =
n∑
j=1

at j xj +
n∑
i=1

xiait .

Therefore, we have proved that (∂/∂x)
(
xᵀAx

)
= Ax +Aᵀx.

Similarly, we can compute

∂y

∂ai j
= xi xj (∀i, j ∈ {1, 2, · · · , n}).

Then we have

∂y

∂A
=


x2

1 x1x2 · · · x1xn
x1x2 x2

2 · · · x2xn
...

...
. . .

...
x1xn x2xn · · · x2

n


.

As shown in Example 2.1.2, this matrix equals to xxᵀ. Therefore, we have
shown that (∂/∂A)

(
xᵀAx

)
= xxᵀ holds. �

The following box lists all matrix calculus identities that will be used in
the remainder of this book. Readers are encouraged to examine them for
future reference.

Matrix Calculus Identities for Machine Learning

∂

∂x

(
xᵀx

)
= 2x

∂

∂x

(
xᵀy

)
= y

∂

∂x

(
xᵀAx

)
= Ax +Aᵀx

∂

∂x

(
xᵀAx

)
= 2Ax (symmetric A)

∂

∂A

(
xᵀAy

)
= xyᵀ

∂

∂A

(
xᵀA−1y

)
= −(Aᵀ)−1xyᵀ(Aᵀ)−1 (square A)

∂

∂A

(
ln |A|

)
= (A−1)ᵀ = (Aᵀ)−1 (square A)

∂

∂A

(
tr

(
A

) )
= I (square A)
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2.2 Probability and Statistics

Probability theory is a mathematical tool to deal with uncertainty. Proba-
bility is a real number between 0 and 1, assigned to indicate how likely an
event is to occur in an experiment. The higher the probability of an event,
the more likely it is the event will occur. A sample space is defined as a
collection of all possible outcomes in an experiment. Any subset of the
sample space can be viewed as an event. The probability of a null event
is 0, and that of the full sample space is 1. For example, in an experiment
of tossing a fair six-faced dice only once, the sample space includes six
outcomes in total: {1, 2, · · · , 6}. We can define many events for this experi-
ment, such as A = "observing an even number," B = "observing the digit 6,"
C = "observing a natural number," and D = "observing a negative number".
We can easily calculate the probabilities for these events as Pr(A) = 1/2,
Pr(B) = 1/6, Pr(C) = 1, and Pr(D) = 0.

2.2.1 Random Variables and Distributions

Random variables are a formal tool to study a random phenomenon in
mathematics. A random variable is defined as a variable whose values de-
pend on the outcomes of a random experiment. In other words, a random
variable could take different values in different probabilities based on
the experimental outcomes. Depending on all possible values a random
variable can take, there are two types of random variables: discrete and
continuous. A discrete random variable can take on only a finite set of dis-
tinct values. For example, if we define a random variable X to indicate
the digit observed in the previous dice-tossing experiment, X is a discrete
random variable that can take only six different values. On the other hand,
a continuous random variable may take an infinite number of possible val-
ues. For example, if we define another random variable Y to indicate a
temperature measurement by a thermometer, Y is continuous because it
may take any real number.

If we want to fully specify a random variable, we have to state two ingre-
dients for it: (i) its domain, the set of all possible values that the random
variable can take, and (ii) its probability distribution, how likely it is that
the random variable may take each possible value. In probability theory,
these two ingredients are often characterized by a probability function.

For any discrete random variable X , we can specify these two ingredients
with the so-called probability mass function (p.m.f.), which is defined on the
domain of X (i.e., {x1, x2, · · · }) as follows:

p(x) = Pr(X = x) for all x ∈ {x1, x2, · · · }.
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Figure 2.4: An illustration of a simple
probability density function (p.d.f.) of a
continuous random variable taking val-
ues in (−∞,+∞).

If we sum p(x) over all values in the domain, it satisfies the sum-to-1
constraint: ∑

x

p(x) = 1. (2.1)

A p.m.f. can be conveniently represented in a table. The table shown in
the left margin represents a simple p.m.f. of a random variable that can
take four distinct values.

x x1 x2 x3 x4

p(x) 0.4 0.3 0.2 0.1
A p.m.f. of a random variable X that takes
four distinct values (i.e. {x1, x2, x3, x4 }) in
the probabilities specified in the table.

For any continuous random variable, we cannot define its probability of
taking a single value. This probability will end up with 0s for all values
because a continuous random variable can take an infinite number of
different values. In probability theory, we instead consider the probability
for a continuous random variable to fall within any interval. For example,
given a continuous random variable X and any interval [a, b] inside its
domain, we try to measure the probability Pr(a ≤ X ≤ b), which is often
nonzero. As shown in Figure 2.4, we define a function p(x) in such a way
that this probability equals to the area of the shaded region under the
function p(x) between a and b. In other words, we have

Pr(a ≤ X ≤ b) =
∫ b

a

p(x) dx,

which holds for any interval [a, b] inside the domain of the random vari-
able. We usually call p(x) the probability density function (p.d.f.) of X (see the
margin note for an explanation). If we choose the entire domain as the
interval, by definition, the probability must be 1. Therefore, we have the
sum-to-1 constraint ∫ +∞

−∞

p(x) dx = 1, (2.2)

which holds for any probability density function.

By definition, we have

p(x) = lim
∆x→0

Pr
(
x ≤ X ≤ x + ∆x

)
∆x

=
probability

interval
= probability density.

In addition to p.d.f., we can also define
another probability function for any con-
tinuous random variable X as

F(x) = Pr
(
X ≤ x

)
(∀x),

which is often called the cumulative distri-
bution function (c.d.f.). By definition, we
have

lim
x→−∞

F(x) = 0 and lim
x→+∞

F(x) = 1,

and
F(x) =

∫ x

−∞

p(x) dx

p(x) =
d

dx
F(x).

2.2.2 Expectation: Mean, Variance, and Moments

As we know, a random variable is fully specified by its probability function.
In other words, the probability function gives the full knowledge on the
random variable, and we are able to compute any statistics of it from the
probability function. Here, let us look at how to compute some important
statistics for random variables from a p.d.f. or p.m.f. Thereafter, we will
use p(x) to represent the p.m.f. for a discrete random variable and the p.d.f.
for a continuous random variable.

Given a continuous random variable X , for any function f (X) of the
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random variable, we can define the expectation of f (X) as follows:

E
[

f (X)
]
=

∫ +∞

−∞

f (x) p(x) dx.

If X is a discrete random variable, we replace the integral with summation
as follows:

E
[

f (X)
]
=

∑
x

f (x) p(x).

Because X is a random variable, the function f (X) also yields different val-
ues in different probabilities. The expectation E

[
f (X)

]
gives the average

of all possible values of f (X). Relying on the expectation, we may define
some statistics for random variables. For example, the mean of a random
variable is defined as the expectation of the random variable itself (i.e.,
E

[
X
]
). The rth moment of a random variable is defined as the expectation

of its rth power (i.e., E
[
Xr

]
; for any r ∈ N). The variance of a random

variable is defined as follows:

var
(
X
)
= E

[ (
X −E[X]

)2] .

Intuitively speaking, the mean of a random variable indicates the center
of its distribution, and the variance tells how much it may deviate from
the center on average.

For any constant c irrelevant of X, it is
easy to show

E[c] = c

E[c · X] = c ·E[X].

Example 2.2.1 For any random variable X , show that

var
(
X
)
= E

[
X2] − (

E[X]
)2.

E[X] can be viewed as a constant because
it is a fixed value for any random variable
X.

var
(
X
)
= E

[ (
X −E[X]

)2]
= E

[
X2 − 2 · X ·E[X] +

(
E[X]

)2
]

= E
[
X2] − 2E[X] ·E[X] +

(
E[X]

)2

= E
[
X2] − (

E[X]
)2.

�

Next, let us revisit the general principle of the bias–variance trade-off dis-
cussed in the previous chapter. In any machine learning problem, we
basically need to estimate a model from some training data. The true
model is usually unknown but fixed, denoted as f . Hence, we can treat
the true model f as an unknown constant. Imagine that we can repeat the
model estimation many times. At each time, we randomly collect some
training data and run the same learning algorithm to derive an estimate,
denoted as f̂ . The estimate f̂ can be viewed as a random variable because
we may derive a different estimate each time depending on the training
data used, which differ from one collection to another. Generally speaking,
we are interested in the average learning error between an estimate f̂ and
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the true model f :
error = E

[
( f̂ − f )2

]
.

The bias of a learning method is defined as the difference between the true
model and the mean of all possible estimates derived from this method:

bias =
��� f −E

[
f̂
] ���.

The variance of an estimate is as defined previously:

variance = var
(
f̂
)
= E

[ (
f̂ −E[ f̂ ])2

]
.

Example 2.2.2 The Bias-Variance Trade-Off

Show that the bias and variance decomposition holds as follows:

error = bias2 + variance.

Because both f and E[ f̂ ] are constants,
we have

E
[ (
f −E[ f̂ ]

) (
f̂ −E[ f̂ ]

) ]
=

(
f −E[ f̂ ]

)
E

[
f̂ −E[ f̂ ]

]
=

(
f −E[ f̂ ]

)
���

���:
= 0(

E[ f̂ ] −E[ f̂ ]
)

= 0.

error = E
[
( f − f̂ )2

]
= E

[ (
f −E[ f̂ ] − f̂ +E[ f̂ ]

)2
]

= E
[ (

f −E[ f̂ ]
)2

]
+E

[ (
f̂ −E[ f̂ ]

)2
]

−2 ·
((((

(((
((((

E
[ (

f −E[ f̂ ]
) (

f̂ −E[ f̂ ]
) ]

=
(
f −E[ f̂ ]

)2︸         ︷︷         ︸
bias2

+E
[ (

f̂ −E[ f̂ ]
)2

]
︸              ︷︷              ︸

variance

.

�

2.2.3 Joint, Marginal, and Conditional Distributions

We have discussed the probability functions for a single random variable.
If we need to consider multiple random variables at the same time, we
can similarly define some probability functions for them in the product
space of their separate domains.

Assume the domains of two random vari-
ables, X and Y , are

X ∈
{
x1, x2

}
and Y ∈

{
y1, y2

}
.

The product space of X andY includes all
pairs like the following:{

(x1, y1), (x1, y2), (x2, y1), (x2, y2)
}
.

If we have multiple discrete random variables, a multivariate function can
be defined in the product space of their domains as follows:

p(x, y) = Pr(X = x,Y = y) ∀x ∈ {x1, x2, · · · }, y ∈ {y1, y2, · · · },

where p(x, y) is often called the joint distribution of two random variables
X and Y . The joint distributions of discrete random variables can also
be represented with some multidimensional tables.

y \ x x1 x2 x3

y1 0.03 0.24 0.17
y2 0.23 0.11 0.22 For example, a joint

distribution p(x, y) of two discrete random variables, X and Y , is shown
in the left margin, where each entry indicates the probability for X and
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Figure 2.5: An illustration of a joint distri-
bution (p.d.f.) of two continuous random
variables p(x, y).

Y to take the corresponding values. If we sum over all entries in a joint
distribution, it must satisfy the sum-to-1 constraint

∑
x

∑
y p(x, y) = 1.

For multiple continuous random variables, we can follow the same idea
of the p.d.f. to define a joint distribution, as in Figure 2.5, to ensure that
the probability for them to fall into any region Ω in their product space
can be computed by the following multiple integral:

Pr
( (

x, y
)
∈ Ω

)
=

∫
· · ·

∫
Ω

p(x, y) dxdy.

Similarly, if we integrate the joint distribution over the entire space, it
satisfies the sum-to-1 constraint:

∫ +∞
−∞

∫ +∞
−∞

p(x, y) dxdy = 1.

A joint distribution fully specifies all underlying random variables. From
a joint distribution, we should be able to derive any information regarding
each underlying random variable. From a joint distribution of multiple
random variables, we can derive the distribution function of any subset of
these random variables by an operation called marginalization. The derived
distribution of a subset is often called a marginal distribution. A marginal
distribution is derived by marginalizing all irrelevant random variables,
namely, integrating out each continuous random variable or summing out
each discrete random variable. For example, given a joint distribution of
two random variables p(x, y), we can derive the marginal distribution of
one random variable by marginalizing out the other one:

p(x) =
∫ +∞

−∞

p(x, y)dy,

if y is a continuous random variable, or

p(x) =
∑
y

p(x, y),

if y is a discrete random variable. This marginalization can be applied to
any joint distribution to derive a marginal distribution of any subset of
random variables that we are interested in. This marginalization is often
called the rule of sum in probability.

If x is a discrete random variable, we have

p(x | y) =
p(x, y)
p(y)

=
p(x, y)∑
x p(x, y)

Moreover, we can further define the so-called conditional distributions
among multiple random variables. For example, the conditional distribu-
tion of x given y is defined as follows:

p(x | y) ∆=
p(x, y)
p(y)

=
p(x, y)∫
p(x, y) dx

.

The conditional distribution p(x | y) is a function of x, and it only describes
how x is distributed when y is known to take a particular value. Using a
conditional distribution, we can compute the conditional expectation of
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f (X)when Y is given as Y = y0:

EX

[
f (X)

��Y = y0

]
=

∫ +∞

−∞

f (x) · p(x | y0) dx.

If X is discrete, we have

EX

[
f (X)

��Y = y0

]
=

∑
x

f (x) · p(x | y0).

Example 2.2.3 Assuming the joint distribution of two continuous ran-
dom variables, X and Y , is given as p(x, y), compare the regular mean of
X (i.e., E

[
X
]
) and a conditional mean of X when Y = y0 (i.e., EX

[
X

��Y =
y0

]
).

E
[
X
]
=

∫ +∞

−∞

x · p(x) dx =
∫ +∞

−∞

∫ +∞

−∞

x · p(x, y) dxdy

EX

[
X

��Y = y0
]
=

∫ +∞

−∞

x · p(x | y0) dx =
∫ +∞

−∞

x ·
p(x, y0)

p(y0)
dx

=

∫ +∞
−∞

x · p(x, y0) dx∫ +∞
−∞

p(x, y0) dx
.

From this, we can see that both means can be computed from the joint
distribution, but they are two different quantities. �

Two random variables, X and Y , are said to be independent if and only if
their joint distribution p(x, y) can be factorized as a product of their own
marginal distributions:

p(x, y) = p(x) p(y) (∀x, y).

From the previous definition of conditional distributions, we can see that
X and Y are independent if and only if p(x |y) = p(x) holds for all y.

If X and Y are discrete,

cov
(
X,Y

)
=∑

x

∑
y

(
x −E[X]

) (
y −E[Y]

)
p(x, y).

For any two random variables, X and Y , we can define the covariance
between them as

cov
(
X ,Y

)
= E

[ (
X −E[X]

) (
Y −E[Y ]

) ]
=

∫ +∞

−∞

∫ +∞

−∞

(
x −E[X]

) (
y −E[Y ]

)
p(x, y) dxdy.

If cov
(
X ,Y

)
= 0, we say that two random variables, X and Y , are un-

correlated. Note that uncorrelatedness is a much weaker condition than
independence. If two random variables are independent, we can show
from the previous definition that they must be uncorrelated. However, it
is generally not true the other way around.

Relying on the concept of the conditional distribution, we can factorize
any joint distribution involving many random variables by following a
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particular order of these variables. For example, we have

p(x1, x2, x3, x4, · · · ) = p(x1) p(x2 |x1) p(x3 |x1, x2) p(x4 |x1, x2, x3) · · ·

Note that there exist many different ways to correctly factorize any joint
distribution as long as the probability of each variable is conditioned on
all previous variables prior to the current one in the order. In probabil-
ity theory, this factorization rule is often called the multiplication rule of
probability, also known as the general product rule of probability.

For example, we can also do the follow-
ing:

p(x1, x2, x3, x4, · · · ) = p(x3) p(x1 |x3)

p(x4 |x1, x3) p(x2 |x1, x3, x4) · · ·

When we have a joint distribution of a large number of random variables,
for notational convenience, we often group some related random variables
into random vectors so that we represent it as a joint distribution of
random vectors:

p
(

x1, x2, x3︸    ︷︷    ︸
x

, y1, y2, y3, y4︸         ︷︷         ︸
y

)
= p(x, y).

We can use the same rule as previously to similarly derive the marginal
and conditional distributions for random vectors, as follows:

If y is discrete, we have

p(x) =
∑

y
p(x, y).

p(x) =
∫

p(x, y) dy

p(x | y) ∆=
p(x, y)
p(y)

.

The mean of a random vector x is a vector, denoted as E[x]:

E
[
x
]
=

∫
x p(x) dx =

∫ ∫
x p(x, y) dxdy.

The covariance between two random vectors, x and y, becomes a matrix,
which is often called the covariance matrix:

cov
(
x, y

)
= E

[ (
x −E[x]

) (
y −E[y]

)ᵀ]
=

∫ ∫ (
x −E[x]

) (
y −E[y]

)ᵀ p(x, y) dxdy.

If x and y are both discrete, we have

E
[
x
]
=

∑
x

∑
y

x p(x, y).

cov
(
x, y

)
=∑

x

∑
y

(
x −E[x]

) (
y −E[y]

)ᵀ
p(x, y).

Finally, the general product rule of probability can be equally applied to
factorize a joint distribution of random vectors as well. p(x, y, z) = p(x) p(y |x) p(z |x, y).

2.2.4 Common Probability Distributions

Here, let us review some popular probability functions often used to rep-
resent the distributions of random variables. For each of these probability
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Figure 2.6: An illustration the binomial
distribution B(r

�� N , p) with p = 0.7 and
N = 20.

functions, we need to know not only its functional form but also what
physical phenomena it can be used to describe. Moreover, we need to
clearly distinguish parameters from random variables in the mathemati-
cal formula and correctly identify the domain of the underlying random
variables (a.k.a. the support of the distribution), as well as the valid range
of the parameters.

Binomial Distribution

The binomial distribution is the discrete probability distribution of the
number of outcomes in a sequence of N independent binary experiments.
Each binary experiment has two different outcomes. We use the binomial
distribution to compute the probabilities of observing r (r ∈ {0, 1, · · · , N})
times of one particular outcome from all N experiments—for example,
the probability of seeing r heads when a coin is tossed N times in a row.
When we use a discrete random variable X to represent the number of
an outcome, and assuming the probability of observing this outcome is
p ∈ [0, 1] in one experiment, the binomial distribution takes the following
formula:

B(r
�� N , p) ∆= Pr(X = r) =

N !
r ! (N − r)!

pr (1 − p)N−r ,

where N and p denote two parameters of the distribution.

We summarize some key properties for the binomial distribution as fol-
lows:

I Parameters: N ∈ N and p ∈ [0, 1].
I Support: The domain of the random variable is r ∈

{
0, 1, · · · N

}
.

I Mean and variance: E[X] = Np and var(X) = Np(1 − p).
I The sum-to-1 constraint:

∑N
r=0 B(r

�� N , p) = 1.

Figure 2.6 shows an example of the binomial distribution for p = 0.7 and
N = 20.When only one binary experiment is done

(N = 1),

B(r
�� N = 1, p) = pr (1 − p)1−r

is also called the Bernoulli distribution,
where r ∈ {0, 1}.

Multinomial Distribution

The multinomial distribution can be viewed as an extension of the bino-
mial distribution when each experiment is not binary but has m distinct
outcomes. In each experiment, the probabilities of observing all possible
outcomes are denoted as {p1, p2, · · · , pm}, where we have the sum-to-1
constraint

∑m
i=1 pi = 1. When we independently repeat the experiment N

times, we introduce m different random variables to represent the number
of each outcome from all N experiments (i.e., {X1, X2, · · · , Xm}). The joint
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distribution of these m random variables is the multinomial distribution,
computed as follows:

Mult
(
r1, r2, · · · , rm

�� N , p1, p2, · · · , pm
)

∆
= Pr(X1 = r1, X2 = r2, · · · , Xm = rm)

=
N !

r1! r2! · · · rm!
pr1

1 pr2
2 · · · prmm ,

where
∑m

i=1 ri = N holds because N experiments are conducted in total.

We summarize some properties for the multinomial distribution as fol-
lows:

I Parameters: N ∈ N; 0 ≤ pi ≤ 1 (∀i = 1, 2, · · · , m) and
∑m

i=1 pi = 1.
I Support (the domain of m random variables):

ri ∈ {0, 1, · · · N} (∀i = 1, · · · , m) and
∑m

i=1 ri = N .
I Means, variances, and covariances:

E
[
Xi

]
= Npi and var(Xi) = Npi(1 − pi) (∀i)

cov(Xi , Xj ) = −Npipj (∀i, j).

I The sum-to-1 constraint:∑
r1 · · ·rm

Mult
(
r1, r2, · · · , rm

�� N , p1, p2, · · · , pm
)
= 1.

As we will learn, the multinomial distribution is the main building block
for constructing any statistical model for discrete random variables in
machine learning.

When we conduct only one experiment
(N = 1),

Mult
(
r1, · · · , rm

�� N = 1, p1, · · · , pm

)
= p

r1
1 pr2

2 · · · p
rm
m

is also called the categorical distribution,
where we have ri ∈ {0, 1} (∀i) and

m∑
i=1

ri = 1.

Beta Distribution

The beta distribution is used to describe a continuous random variable,
X , that takes a probability-like value x ∈ R and 0 ≤ x ≤ 1.The beta
distribution takes the following functional form: The gamma function is defined as fol-

lows:

Γ(x) =

∫ +∞

0
tx−1 e−t dt (∀x > 0).

Γ(x) is often considered as a generaliza-
tion of the factorial to noninteger num-
bers because of the following property:

Γ(x + 1) = x Γ(x)

Beta
(
x
��α, β

)
=
Γ(α + β)

Γ(α)Γ(β)
xα−1 (1 − x)β−1,

where Γ(·) denotes the gamma function, and α and β are two positive
parameters of the beta distribution. Similarly, we can summarize some
key properties for the beta distribution as follows:

I Parameters: α > 0 and β > 0.
I Support (the domain of the continuous random variable):

x ∈ R and 0 ≤ x ≤ 1.
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Figure 2.7: An illustration of some beta
distributions when two parameters α and
β take different values: (i) α > 1 and β >
1; (ii) 0 < α < 1 < β or 0 < β < 1 < α; (iii)
0 < α, β < 1.

I Mean and variance:

E
[
X
]
=

α

α + β
var(X) =

αβ

(α + β)2(α + β + 1)
.

I The sum-to-1 constraint:∫ 1

0
Beta

(
x | α, β) dx = 1.

We can recognize that the beta distribution shares the same functional
form as the binomial distribution. They differ only in terms of swapping
the roles of the parameters and random variables. Therefore, these two
distributions are said to be conjugate to each other. In this sense, the beta
distribution can be viewed as a distribution of the parameter p in the
binomial distribution. As we will learn, this viewpoint plays an important
role in Bayesian learning (refer to Chapter 14).

Depending on the choices of the two parameters α and β, the beta dis-
tribution behaves quite differently. As shown in Figure 2.7, when both
parameters are larger than 1, the beta distribution is a unimodal bell-
shaped distribution between 0 and 1. The mode of the distribution can be
computed as (α − 1)/(α + β − 2) in this case. It becomes a monotonic distri-
bution when one parameter is larger than 1 and the other is smaller than 1,
particularly monotonically decaying if 0 < α < 1 < β and monotonically
increasing if 0 < β < 1 < α. At last, if both parameters are smaller than
1, the beta distribution is bimodal between 0 and 1, peaking at the two
ends.

Dirichlet Distribution

The Dirichlet distribution is a multivariate generalization of the beta dis-
tribution that is used to describe multiple continuous random variables
{X1, X2, · · · , Xm}, taking values on the probabilities of observing a com-
plete set of mutually exclusive events. As a result, the values of these
random variables are always summed to 1 because these events are com-
plete. For example, if we use some biased dice in a tossing experiment, we
can define six random variables, each of which represents the probability
of observing each digit when tossing a die. For each biased die, these six
random variables take different probabilities, but they always sum to 1 for
each die. These six random variables from all biased dice can be assumed
to follow the Dirichlet distribution.

In general, the Dirichlet distribution takes the following functional form:

Dir
(
p1, p2, · · · , pm

�� r1, r2, · · · , rm
)
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Figure 2.8: An illustration of the three-
dimensional simplex of the Dirichlet dis-
tribution of three random variables.

=
Γ(r1 + · · · + rm)
Γ(r1) · · · Γ(rm)

pr1−1
1 pr2−1

2 · · · prm−1
m ,

where {r1, r2, · · · , rm} denote m positive parameters of the distribution. We
can similarly summarize some key properties for the Dirichlet distribution
as follows:

I Parameters: ri > 0 (∀i = 1, · · · , m).
I Support: The domain of m random variables is an m-dimensional

simplex that can be represented as

0 < pi < 1 (∀i = 1, · · · , m) and
m∑
i=1

pi = 1.

For example, Figure 2.8 shows a three-dimensional simplex for the
Dirichlet distribution of three random variables {p1, p2, p3} when
m = 3.

I Means, variances, and covariances:

E
[
Xi

]
=

ri
r0

var
(
Xi

)
=

ri(r0 − ri)
r2

0 (r0 + 1)

cov
(
Xi , Xj

)
= −

rirj
r2

0 (r0 + 1)
,

where we denote r0 =
∑m

i=1 ri .
I The sum-to-1 constraint holds inside the simplex:∫

· · ·

∫
p1 · · ·pm

Dir
(
p1, p2, · · · pm

�� r1, r2, · · · , rm
)

dp1 · · · dpm = 1.

Figure 2.9: An illustration of three Dirich-
let distributions in the three-dimensional
simplex with various choices of parame-
ters:
1. Regular: r1 = 2.0, r2 = 4.0, r3 = 10.0
2. Symmetric: r1 = r2 = r3 = 4.0
3. Sparse: r1 = 0.7, r2 = 0.8, r3 = 0.9

The shape of a Dirichlet distribution also heavily depends on the choice of
its parameters. Figure 2.9 plots the Dirichlet distribution in the triangle
simplex for three typical choices of its parameters. Generally speaking,
if we choose all parameters to be larger than 1, the Dirichlet distribution
is a unimodal distribution centering somewhere in the simplex. In this
case, the mode of the distribution is located at

[
p̂1 p̂2 · · · p̂m

]ᵀ, where
p̂i = (ri − 1)/(r0 −m) for all i = 1, 2, · · · , m. If we force all parameters to
be the same value, it leads to a symmetric distribution centering at the
center of the simplex. On the other hand, if we choose all parameters to
be smaller than 1, it results in a distribution that yields a large probability
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Figure 2.10: An illustration of two uni-
variate Gaussian distributions with vari-
ous parameters (σ2 > σ1).

mass only near the vertices and edges of the simplex. It is easy to verify
that the vertices or edges correspond to the cases where some random
variables pi take 0 values. In other words, this choice of parameters favors
sparse choices of random variables, leading to the so-called sparse Dirichlet
distribution.

Moreover, we can also identify that the Dirichlet distribution shares the
same functional form as the multinomial distribution. Therefore, these
two distributions are also conjugate to each other. Similarly, the Dirichlet
distribution can be viewed as a distribution of all parameters of a multi-
nomial distribution. Because the multinomial distribution is the main
building block for any statistical model of discrete random variables,
the Dirichlet distribution is often said to be a distribution of all distribu-
tions of discrete random variables. Similar to the beta distribution, the
Dirichlet distribution also plays an important role in Bayesian learning for
multinomial-related models (see Chapter 14).

Gaussian Distribution

The univariate Gaussian distribution (a.k.a. the normal distribution) is often
used to describe a continuous random variable X that can take any real
value in R. The general form of a Gaussian distribution is

N
(
x | µ,σ2) = 1

√
2πσ2

e−
(x−µ)2

2σ2 ,

where µ and σ2 are two parameters. We can summarize some key proper-
ties for the univariate Gaussian distribution as follows:

I Parameters: µ ∈ R and σ2 > 0.
I Support: The domain of the random variable is x ∈ R.
I Mean and variance:

E[X] = µ and var(X) = σ2.

I The sum-to-1 constraint:∫ +∞

−∞

N(x | µ,σ) dx = 1.

Several important identities related to the
univariate Gaussian distribution are as
follows:∫ +∞

−∞

e
−
(x−µ)2

2σ2 dx =
√

2πσ2,

∫ +∞

−∞

x e
−
(x−µ)2

2σ2 dx = µ
√

2πσ2,∫ +∞

−∞

x2 e
−
(x−µ)2

2σ2 dx = (σ2 + µ2)
√

2πσ2. The Gaussian distribution is the well-known unimodal bell-shaped curve.
As shown in Figure 2.10, the first parameter µ equals to the mean, indicat-
ing the center of the distribution, whereas the second parameters σ equals
to the standard deviation, indicating the spread of the distribution.
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Figure 2.11: An illustration of a unimodal
multivariate Gaussian distribution in a
two-dimensional space.

Multivariate Gaussian Distribution

The multivariate Gaussian distribution extends the univariate Gaussian
distribution to represent a joint distribution of multiple continuous ran-
dom variables {X1, X2, · · · , Xn}, each of which can take any real value in
R. If we arrange these random variables as an n-dimensional random
vector, the multivariate Gaussian distribution takes the following compact
form:

N(x | µ,Σ) =
1√

(2π)n |Σ |
e−
(x−µ)ᵀΣ−1(x−µ)

2 ,

where the vector µ ∈ Rn and the symmetric matrix Σ ∈ Rn×n denote two
parameters of the distribution. Note that the exponent in the multivariate
Gaussian distribution is computed as follows:

[
(x − µ)ᵀ

]
1×d

[
Σ−1

]
d×d

[
x − µ

]
d×1

=
[
·
]

1×1.

We can summarize some key properties for the multivariate Gaussian
distribution as follows: Some important identities related to the

multivariate Gaussian distribution are as
follows: ∫

N(x | µ,Σ) dx = 1,∫
xN(x | µ,Σ) dx = µ,∫

xxᵀN(x | µ,Σ) dx = Σ + µµᵀ.

I Parameters: µ ∈ Rn; Σ ∈ Rn×n � 0 is symmetric, positive definite,
and invertible.

I Support: The domain of all random variables: x ∈ Rn.
I Mean vector and covariance matrix:

E
[
x
]
= µ and cov

(
x, x

)
= Σ.

Therefore, the first parameter µ is called the mean vector, and the
second parameter Σ is called the covariance matrix. The inverse co-
variance matrix Σ−1 is often called the precision matrix.

I The sum-to-1 constraint:∫
N(x | µ,Σ) dx = 1.

I Any marginal distribution or conditional distribution of these n
random variables is also Gaussian. (See Exercise Q2.8.)

As shown in Figure 2.11, the multivariate Gaussian is a unimodal distri-
bution in the n-dimensional space, centering at the mean vector µ. The
shape of the distribution depends on the eigenvalues (all positive) of the
covariance matrix Σ.

In order not to make this section further lengthy, the description of other
probability distributions, including the uniform, Poisson, gamma, inverse-
Wishart, and von Mises–Fisher distributions, are provided in Appendix A
as a reference for readers.
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2.2.5 Transformation of Random Variables

Assume we have a set of n continuous random variables, denoted as
{X1, X2, · · · , Xn}. If we arrange their values as a vector x ∈ Rn, we can
represent their joint distribution (p.d.f.) as p(x). We can apply some trans-
formations to convert them into another set of n continuous random
variables as follows:

Y1 = f1(X1, X2, · · · , Xn)

Y2 = f2(X1, X2, · · · , Xn)

...

Yn = fn(X1, X2, · · · , Xn).

We similarly arrange the values of the new random variables {Y1,Y2, · · · ,Yn}
as another vector y ∈ Rn, and we further represent the transformations as
a single vector-valued and multivariate function:x =


x1
x2
...
xn


f
−→ y =


y1
y2
...
yn



y =


y1
y2
...
yn


f −1

−→ x =


x1
x2
...
xn



y = f (x) (x ∈ Rn, y ∈ Rn).

If this function is continuously differentiable and invertible, we can rep-
resent the inverse function as x = f −1(y). Under these conditions, we are
able to conveniently derive the joint distribution for these new random
variables, that is, p(y).

We first need to define the so-called Jacobian matrix for these inverse
transformations x = f −1(y), as follows:

J(y) =
[
∂xi
∂yj

]
n×n

=



∂x1
∂y1

∂x1
∂y2

· · ·
∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

· · ·
∂x2
∂yn

...
...

. . .
...

∂xn
∂y1

∂xn
∂y2

· · ·
∂xn
∂yn


.

According to Bertsekas [21], the joint distribution of the new random
variables can be derived as

p(y) =
�� J(y) �� p(x) =

�� J(y) �� p
(
f −1(y)

)
, (2.3)

where
�� J(y) �� denotes the determinant of the Jacobian matrix.

Example 2.2.4 Assume the joint distribution (p.d.f.) of n continuous ran-
dom variables is given as p(x) (x ∈ Rn), and we use an n × n orthogonal
matrix U to linearly transform x into another set of n random variables
as y = Ux. Show that p(y) = p(x) in this case.

y = Ux =⇒ x = U−1y.
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According to the definition of an orthogonal matrix, we know that U−1 =

Uᵀ. Moreover, because the inverse function is linear, we can verify that
the Jacobian matrix

J(y) = U−1 = Uᵀ.

Because U is an orthogonal matrix, we have |Uᵀ | = |U | = 1. According to
the previous result, we can derive p(y) = p(x) due to

�� J(y) �� = 1. �

An orthogonal matrix (a.k.a. orthonormal
matrix) U is a real square matrix whose
column (or row) vectors are normalized
to 1 and orthogonal to each other. That is,

UᵀU = UUᵀ = I.

An orthogonal matrix represents a spe-
cial linear transformation of rotating the
coordinate system.

An interesting conclusion from this example is that any orthogonal lin-
ear transformation of some random variables does not affect their joint
distribution.

2.3 Information Theory

Information theory was founded by Claude Shannon in 1948 as a discipline
to study the quantification, storage, and communication of information.
In the past decades, it has played a critical role in modern communication
as well as many other applications in engineering and computer science.
This section reviews information theory from the perspective of machine
learning and emphasizes only the concepts and results relevant to machine
learning, particularly mutual information [222] and the Kullback–Leibler (KL)
divergence [137].

2.3.1 Information and Entropy

The first fundamental problem in information theory is how to quanti-
tatively measure information. The most significant progress to address
this issue is attributed to Shannon’s brilliant idea of using probabilities.
The amount of information that a message delivers solely depends on
the probability of observing this message rather than its real content or
anything else. This treatment allows us to establish a general mathematical
framework to handle information independent of application domains. Ac-
cording to Shannon, if the probability of observing an event A is Pr(A), the
amount of information delivered by this event A is calculated as follows:

I(A) = log2

( 1
Pr(A)

)
= − log2

(
Pr(A)

)
.

When we use the binary logarithm log2(·), the unit of the calculated in-
formation is the bit. Shannon’s definition of information is intuitive and
consistent with our daily experience. A small-probability event will sur-
prise us because it contains more information, whereas a common event
that happens every day is not telling us anything new.
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Figure 2.12: An illustration of entropy
H(X) as a function of p for a binary ran-
dom variable.

Shannon’s idea can be extended to measure information for random vari-
ables. As we know, a random variable may take different values in dif-
ferent probabilities, and we can define the so-called entropy for a discrete
random variable X as the expectation of the information for it to take
different values:

H(X) = E
[
− log2 Pr(X = x)

]
= −

∑
x

p(x) log2 p(x),

where p(x) is the p.m.f. of X . Intuitively speaking, the entropy H(X) repre-
sents the amount of uncertainty associated with the random variable X ,
namely, the amount of information we need to fully resolve this random
variable.

The entropy of a continuous random vari-
able X is similarly defined as

H(X) = E
[
− log2 p(x)

]
= −

∫
x
p(x) log2 p(x)dx,

where p(x) denotes the p.d.f. of X.

Example 2.3.1 Calculate the entropy for a binary random variable X
that takes x = 1 in the probability of p and x = 0 in the probability of
1 − p, where p ∈ [0, 1].

x 1 0
p(x) p 1 − p

We define 0 × log2 0 = 0.
H(X) = −

∑
x=0,1

p(x) log2 p(x) = −p log2 p − (1 − p) log2(1 − p).

Figure 2.12 shows H(X) as a function of p and shows that H(X) = 0 when
p = 1 or p = 0. In these cases, the entropy H(X) equals to 0 because X
surely takes the value of 1 (or 0) when p = 1 (or p = 0). On the other hand,
X achieves the maximum entropy value when p = 0.5. In this case, X
contains the highest level of uncertainty because it may take either value
equiprobably. �

Example 2.3.2 Calculate the entropy for a continuous random variable
X that follows a Gaussian distribution N(x | µ0,σ2

0 ).

H(X) = −

∫
x

N(x | µ0,σ2
0 ) log2 N(x | µ0,σ2

0 ) dx

=
log2(e)

2

∫
x

[
log(2πσ2

0 ) +
(x − µ0)

2

σ2
0

]
N(x | µ0,σ2

0 ) dx

=
1
2
[

log2(2πσ
2
0 ) + log2(e)

]
=

1
2

log2(2πeσ2
0 ).

Refer to the identities of the univariate
Gaussian distribution for how to solve
this integral.

And we have

logN(µ0,σ2
0 ) =

log2 N(µ0,σ2
0 )

log2(e)
.

The entropy of a Gaussian variable solely depends on its variance. A larger
variance indicates a higher entropy because the random variable scatters
more widely. Note that the entropy of a Gaussian variable may become
negative when its variance is very small (i.e., σ2

0 < 1/2πe). �

The concept of entropy can be further extended to multiple random vari-
ables based on their joint distribution. For example, assuming the joint
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distribution of two discrete random variables, X and Y , is given as p(x, y),
we can define the joint entropy for them as follows: If X and Y are continuous random vari-

ables, we calculate their joint entropy by
replacing the summations with integrals:

H(X,Y) =

−

∫ ∫
p(x, y) log2 p(x, y) dxdy.

H(X ,Y ) = EX,Y
[
− log2 Pr(X = x,Y = y)

]
= −

∑
x

∑
y

p(x, y) log2 p(x, y).

Intuitively speaking, the joint entropy represents the total amount of
uncertainty associated with these two random variables, namely, the total
amount of information we need to resolve both of them.

Furthermore, we can define the so-called conditional entropy for two ran-
dom variables, X and Y , based on their conditional distribution p(y |x) as
follows:

H(Y |X) = EX,Y
[
− log2 Pr(Y = y |X = x)

]
= −

∑
x

∑
y

p(x, y) log2 p(y |x).

Intuitively speaking, the conditional entropy H(Y |X) indicates the amount
of uncertainty associated with Y after X is known, namely, the amount of
information we still need to resolve Y even after X is known. Similarly,
we can define the conditional entropy H(X |Y ) based on the conditional
distribution p(x |y) as follows:

H(X |Y ) = EX,Y
[
− log2 Pr(X = x |Y = y)

]
= −

∑
x

∑
y

p(x, y) log2 p(x |y).

In the same way, H(X |Y ) indicates the amount of uncertainty associated
with X after Y is known, namely, the amount of information we still need
to resolve X after Y is known.

If X and Y are continuous, we have

H(Y |X) =

−

∫ ∫
p(x, y) log2 p(y |x) dxdy

and
H(X |Y) =

−

∫ ∫
p(x, y) log2 p(x |y) dxdy.

If two random variables X and Y are independent, we have

See Exercise Q2.10.
H(X ,Y ) = H(X) + H(Y )

H(X |Y ) = H(X) and H(Y |X) = H(Y ).

2.3.2 Mutual Information

As we have learned, the entropy H(X) represents the amount of uncer-
tainty related to the random variable X , and the conditional entropy
H(X |Y ) represents the amount of uncertainty related to the same vari-
able X after another random variable Y is known. Therefore, the difference
H(X) − H(X |Y ) represents the uncertainty reduction about X before and
after Y is known. In other words, it indicates the amount of information
another random variable Y can provide for X . We often define this un-
certainty reduction as the mutual information between these two random
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Figure 2.13: An illustration of how mu-
tual information is related to entropy,
joint entropy, and conditional entropy.

variables:If X and Y are continuous,

I (X,Y) =∫ ∫
p(x, y) log2

p(x, y)
p(x)p(y)

dxdy.

I(X ,Y ) = H(X) − H(X |Y )

=
∑
x

∑
y

p(x, y) log2

( p(x, y)
p(x)p(y)

)
.

Of course, we have several different ways to measure the uncertainty
reduction between two random variables, and they all lead to the same
mutual information as defined previously:

See Exercise Q2.11.

I(X ,Y ) = H(Y ) − H(Y |X)

= H(X) + H(Y ) − H(X ,Y ).

In general, we can conceptually describe the relations among all of these
quantities as shown in Figure 2.13. This diagram is useful to visualize all
the aforementioned equations related to mutual information.

In the following discussion, we summarize several important properties
of mutual information:

I Mutual information is symmetrical (i.e., I(X ,Y ) = I(Y , X)).
I Mutual information is always nonnegative (i.e., I(X ,Y ) ≥ 0).
I I(X ,Y ) = 0 if and only if X and Y are independent.

We can easily verify the first property of symmetry from the definition of
mutual information. We will prove the other two properties in the next
section. From these, we can see that mutual information is guaranteed to
be nonnegative for any random variables. In contrast, entropy is nonnega-
tive only for discrete random variables, and it may become negative for
continuous random variables (see Example 2.3.2).

Finally, the next example explains how to use mutual information for
feature selection in machine learning.

Example 2.3.3 Mutual Information for Keyword Selection

In many real-world text-classification tasks, we often need to filter out
noninformative words in text documents before we build classification
models. Mutual information is often used as a popular data-driven
criterion to select keywords that are informative.

Assume we want to build a text classifier to automatically classify a news
article into one of the predefined topics, such as sports, politics, business,
or science. We first need to collect some news articles from each of these
categories. However, these news articles often contain a large number of
distinct words. It will definitely complicate the model learning process
if we keep all words used in the text documents. Moreover, in natural
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languages, there are many common words that are used everywhere, so
they do not provide much information in terms of distinguishing news
topics. In natural language processing, it is a common practice to filter out
all noninformative words in an initial preprocessing stage. Mutual infor-
mation serves as a popular criterion to calculate the correlation between
each word and a news topic for this purpose.

As we have learned, mutual information is defined for random variables.
We need to specify random variables before we can actually compute
mutual information. Let us first pick up a word (e.g., score) and a topic
(e.g., "sports"); we define two binary random variables:

X ∈ {0, 1} : whether a document’s topic is "sports" or not,
Y ∈ {0, 1} : whether a document contains the word score or not.

We can go over the entire text corpus to compute a joint distribution for X
and Y , as shown in the margin. The probabilities in the table are computed
based on the counts for each case. For example, we can do the following
counts: p(x, y) y = 0 y = 1 p(x)

x = 0 0.80 0.02 0.82
x = 1 0.11 0.07 0.18
p(y) 0.91 0.09p(X = 1,Y = 1) =

# of docs with topic "sports" and containing score
total # of docs in the corpus

p(X = 1,Y = 0) =
# of docs with topic "sports" but not containing score

total # of docs in the corpus

p(X = 0,Y = 0) =
# of docs without topic "sports" and not containing score

total # of docs in the corpus

p(X = 0,Y = 1) =
# of docs without topic "sports" but containing score

total # of docs in the corpus
.

I (X,Y) =

0.80 × log2
0.80

0.82 × 0.91

+0.02 × log2
0.02

0.82 × 0.09

+0.11 × log2
0.11

0.18 × 0.91

+0.07 × log2
0.07

0.18 × 0.09
= 0.126

Once all probabilities are computed for the joint distribution, the mutual
information I(X ,Y ) can be computed as

I(X ,Y ) =
∑

x∈{0,1}

∑
y∈{0,1}

p(x, y) log2
p(x, y)

p(x)p(y)
= 0.126.

The mutual information I(X ,Y ) reflects the correlation between the word
score and the topic "sports." If we repeat this procedure for another word,
what, and the topic "sports," we may obtain the corresponding I(X ,Y ) =
0.00007. From these two cases, we can tell that the word score is much
more informative than what in relation to the topic "sports." Finally, we
just need to repeat these steps of mutual information computation for all
combinations of words and topics, then filter out all words that yield low
mutual-information values with respect to all topics. �
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Figure 2.14: An illustration of Jensen’s in-
equality for two points of a convex func-
tion. (Image credit: Eli Osherovich/CC-
BY-SA-3.0.)

2.3.3 KL Divergence

Kullback–Leibler (KL) divergence is a criterion to measure the difference
between two probability distributions that have the same support. Given
any two distributions ( e.g., p(x) and q(x)), if the domains of their underly-
ing random variables are the same, the KL divergence is defined as the
expectation of the logarithm difference between two distributions over
the entire domain:

log
( p(x)
q(x)

)
= log p(x) − log q(x). KL

(
p(x)

 q(x)
)
∆
= Ex∼p(x)

[
log

( p(x)
q(x)

)]
.

Note that the expectation is computed with respect to the first distribution
in the KL divergence. As a result, the KL divergence is not symmetric; that
is, KL

(
q(x) | | p(x)

)
, KL

(
p(x) | | q(x)

)
.By definition, we have

KL
(
q(x)

 p(x))
∆
= Ex∼q(x)

[
log

( q(x)
p(x)

)]
.

For discrete random variables, we can calculate the KL divergence as
follows:

KL
(
p(x)

 q(x)
)
=

∑
x

p(x) log
( p(x)

q(x)

)
.

On the other hand, if the random variables are continuous, the KL diver-
gence is computed with the integral as follows:

KL
(
p(x)

 q(x)
)
=

∫
p(x) log

( p(x)
q(x)

)
dx.

Regarding the property of the KL divergence, we have the following result
from mathematical statistics:

Theorem 2.3.1 The KL divergence is always nonnegative:

KL
(
p(x)

 q(x)
)
≥ 0.

Furthermore, KL
(
p(x)

 q(x)
)
= 0 if and only if p(x) = q(x) holds almost

everywhere in the domain.

Proof:

Step 1: Reviewing Jensen’s inequality

Let’s first review Jensen’s inequality [114] because this theorem can be
derived as a corollary from Jensen’s inequality. As shown in Figure 2.14, a
real-valued function is called convex if the line segment between any two
points on the graph of the function lies above or on the graph. If f (x) is
convex, for any two points x1 and x2, we have

f
(
εx1 + (1 − ε)x2

)
≤ ε f (x1) + (1 − ε) f (x2).
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for any ε ∈ [0, 1]. Jensen’s inequality generalizes the statement that the
secant line of a convex function lies above the graph of the function from
two points to any number of points. In the context of probability theory,
Jensen’s inequality states that if X is a random variable and f (·) is a convex
function, then we have

f
(
E[X]

)
≤ E

[
f (X)

]
The complete proof of Jensen’s inequality is not shown here because its
complexity is beyond the scope of this book.

Step 2: Showing the function − log(x) is strictly convex We have

d2

dx2

(
− log(x)

)
=

1
x2 > 0

for all x > 0.

We know that any twice-differentiable function is convex if it has positive
second-order derivatives everywhere. It is easy to show that − log(x) has
positive second-order derivatives (see margin note).

Step 3: Applying Jensen’s inequality to − log(x)

q(x) satisfies the sum-to-1 constraint be-
cause it is a probability distribution.

KL
(
p(x)

 q(x)
)
= Ex∼p(x)

[
log

( p(x)
q(x)

)]
= Ex∼p(x)

[
− log

( q(x)
p(x)

)]
≥ − log

(
Ex∼p(x)

[ q(x)
p(x)

] )
= − log

( ∫
��p(x)

q(x)

��p(x)
dx

)
= − log

∫
q(x) dx = − log(1) = 0.

According to Jensen’s inequality, equality holds if and only if log
(
p(x)/q(x)

)
is a constant. Because both p(x) and q(x) satisfy the sum-to-1 condition,
this leads to p(x)/q(x) = 1 almost everywhere in the domain. �

Because of the property stated in the theorem, the KL divergence is of-
ten used as a measure of how one probability distribution differs from
another reference probability distribution, analogous to the Euclidean
distance for two points in a space. Intuitively speaking, the KL divergence
KL

(
q(x) | | p(x)

)
represents the amount of information lost when we replace

one probability distribution p(x) with another distribution q(x). However,
we have to note that the KL divergence does not qualify as a formal statis-
tical metric because the KL divergence is not symmetric, and it does not
satisfy the triangle inequality.

In the context of machine learning, the KL divergence is often used as a
loss measure when we use a simple statistical model q(x) to approximate a
complicated model p(x). In this case, the best-fit simple model, denoted as
q∗(x), can be derived by minimizing the KL divergence between them:

q∗(x) = arg min
q(x)

KL
(
q(x) | | p(x)

)
.
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The best-fit model q∗(x) found here is optimal because the minimum
amount of information is lost when a complicated model is approximated
by a simple one. We will come back to discuss this idea further in Chap-
ter 13 and Chapter 14.

Finally, we can also see that mutual information I(X ,Y ) can be cast as the
KL divergence of the following form:

I(X ,Y ) = KL
(
p(x, y)

 p(x)p(y)
)
.

This formulation first proves that mutual information I(X ,Y ) is always
nonnegative because it is a special kind of the KL divergence. We can
also see that I(X ,Y ) = 0 if and only if p(x, y) = p(x)p(y) holds for all x
and y, which implies that X and Y are independent. Therefore, mutual
information can be viewed as an information gain from the assumption
that random variables are independent.

Example 2.3.4 Compute the KL divergence between two univariate
Gaussian distributions with a common variance σ2: N(x | µ1,σ2) and
N(x | µ2,σ2).

Based on the definition of the KL divergence, we have

KL
(
N(x | µ1,σ2)

 N(x | µ2,σ2)
)

=

∫
N(x | µ1,σ2) log

N(x | µ1,σ2)

N(x | µ2,σ2)
dx

= −
1

2σ2

∫
N(x | µ1,σ2)

[
(µ2

1 − µ
2
2) − 2x(µ1 − µ2)

]
dx

= −
1

2σ2

[
(µ2

1 − µ
2
2) − 2µ1(µ1 − µ2)

]
=
(µ1 − µ2)

2

2σ2 .

We can see that the KL divergence is nonnegative and equals to 0 only
when these two Gaussian distributions are identical (i.e., µ1 = µ2). �

Note that∫
xN(x | µ1,σ2) dx = µ1

2.4 Mathematical Optimization

Many real-world problems in engineering and science require us to find
the best-fit candidate among a family of feasible choices in that it satisfies
certain design criteria in an optimal way. These problems can be cast as
a universal problem in mathematics, called mathematical optimization (or
optimization for short). In an optimization problem, we always start with
a criterion and formulate an objective function that can quantitatively
measure the underlying criterion as a function of all available choices. The
optimization problem is solved by just finding the variables that maximize
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or minimize the objective function among all feasible choices. The feasibil-
ity of a choice is usually specified by some constraints in the optimization
problem. The following discussion first introduces a general formulation
for all mathematical optimization problems, along with some related con-
cepts and terminologies. Next, some analytic results regarding optimality
conditions for this general optimization problem under several typical
scenarios are presented. As we will see, for many simple optimization
problems, we can handily derive closed-form solutions based on these
optimality conditions. However, for other sophisticated optimization prob-
lems arising from practical applications, we will have to rely on numerical
methods to derive a satisfactory solution in an iterative manner. Finally,
some popular numerical optimization methods that play an important
role in machine learning, such as a variety of gradient descent methods,
will be introduced.

2.4.1 General Formulation

We first assume each candidate in an optimization problem can be speci-
fied by a bunch of free variables that are collectively represented as a vector
x ∈ Rn, and the underlying objective function is given as f (x). All kinds
of constraints on a feasible choice can always be described by another set
of functions of x, among which we may have equality and/or inequality
constraints. Without losing generality, any mathematical optimization
problem can be formulated as follows: If we need to maximize f (x), we convert

it into minimization as follows:

arg max
x

f (x) ⇔ arg min
x
− f (x).

Similarly, we have

g j (x) ≥ 0 ⇔ −g j (x) ≤ 0.

x∗ = arg min
x

f (x), (2.4)

subject to
hi(x) = 0 (i = 1, 2, · · · , m), (2.5)

gj (x) ≤ 0 ( j = 1, 2, · · · , n). (2.6)

The m equality constraints in Eq. (2.5) and the n inequality constraints
in Eq. (2.6) collectively define a feasible set Ω for the free variable x. We
assume that these constraints are specified in a meaningful way so that the
resultant feasible set Ω is nonempty. An optimization problem essentially
requires us to search for all values of x in Ω so as to yield the best value x∗

that minimizes the objective function in Ω.

This formulation is general enough to accommodate almost all optimiza-
tion problems. However, without further assumptions on the amenability
of the objective function f (x) and all constraint functions {hi(x), gj (x)},
the optimization problem is in general unsolvable [172]. In the history
of mathematical optimization, linear programming is the first category of
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optimization problems that has been extensively studied. The optimiza-
tion is said to be a linear programming problem if all functions in the
formulation, including f (x) and {hi(x), gj (x)}, are linear or affine. Linear
programming problems are considered to be easy to solve, and plenty
of efficient numerical methods have been developed to solve all sorts of
linear programming problems with reasonable theoretical guarantees.

A linear function takes the form of

y = aᵀx,

and an affine function takes the form:

y = aᵀx + b.
During the past decades, the research in mathematical optimization has
mainly focused on a more general group of optimization problems called
convex optimization [28, 172]. The optimization is a convex optimization
problem if the objective function f (x) is a convex function (see Figure 2.14)

A set is said to be convex if for any two
points in the set, the line segment joining
them lies entirely within the set.

and the feasible set Ω defined by all constraints is a convex set (see margin
note). All convex optimization problems have the nice property that a
locally optimal solution is guaranteed to be globally optimal. Because of
this, convex optimization problems can be efficiently solved by many local
search algorithms, which are theoretically guaranteed to converge at a rea-
sonable speed. Compared with linear programming, convex optimization
represents a much wider range of optimization problems, including linear
programming, quadratic programming, second-order cone programming,
and semidefinite programming. Many real-world problems can be formu-
lated or approximated as a convex optimization problem. As we will see,
convex optimization also plays an important role in machine learning. The
learning problems of many useful models are actually convex optimiza-
tion. The nice properties of convex optimization ensure that these models
can be efficiently learned in practice.

2.4.2 Optimality Conditions

Here, we will first review the necessary and/or sufficient conditions for
any x∗ that is an optimal solution to the optimization problem in Eq.
(2.4). These optimality conditions will not only provide us with a good
understanding of optimization problems in theory but also help to derive a
closed-form solution for some relatively simple problems. We will discuss
the optimality conditions for three different scenarios of the optimization
problem in Eq. (2.4), namely, without any constraint, under only equality
constraints, and under both equality and inequality constraints.

Unconstrained Optimization

Let’s start with the cases where we aim to minimize an objective function
without any constraint. In general, an unconstrained optimization problem
can be represented as follows:

x∗ = arg min
x∈Rn

f (x). (2.7)
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Figure 2.15: An illustration of global mini-
mum (maximum) points versus local min-
imum (maximum) points.

Figure 2.16: An illustration of a saddle
point at x = 0, y = 0 on the surface of
f (x, y) = x2 − y2. It is not an extreme
point, but we can verify that the gradi-
ent vanishes there.

For any function f (x), we can define the following concepts relevant to
the optimality conditions of Eq. (2.7):

I Global minimum (maximum)
A point x̂ is said to be a global minimum (or maximum) of f (x) if
f (x̂) ≤ f (x) (or f (x̂) ≥ f (x)) holds for any x in the domain of the
function f (x); see Figure 2.15.

I Local minimum (maximum)
A point x̂ is said to be a local minimum (or maximum) of f (x) if
f (x̂) ≤ f (x) (or f (x̂) ≥ f (x)) holds for all x within a local neighbor-
hood of x̂; that is, ‖x− x̂‖ ≤ ε for some ε > 0, as shown in Figure 2.15.
All local minimum and maximum points are also called local extreme
points.

I Stationary point

x =


x1
x2
...
xn



If a function f (x) is differentiable, we can compute partial derivatives
with respect to each element in x. These partial derivatives are often
arranged as the so-called gradient vector, denoted as follows:

∇ f (x) ∆=
∂ f (x)
∂x

=



∂ f (x)
∂x1
∂ f (x)
∂x2
...

∂ f (x)
∂xn


.

The gradient can be computed for any x in the function domain. If
the gradient ∇ f (x) is nonzero, it points to the direction of the fastest
increase of the function value at x. On the other hand, a point x̂ is
said to be a stationary point of f (x) if all partial derivatives are 0 at
x̂; that is, the gradient vanishes at x̂:

∇ f (x̂) ∆= ∇ f (x)
���
x=x̂
= 0.

I Critical point
A point x̂ is a critical point of a function if it is either a stationary point
or a point where the gradient is undefined. For a general function,
critical points include all stationary points and all singular points
where the function is not differentiable. On the other hand, if the
function is differentiable everywhere, every critical point is also a
stationary point.

I Saddle point
If a point x̂ is a critical point but it is not a local extreme point
of the function f (x), it is called a saddle point. There are usually a
large number of saddle points on the high-dimensional surface of a
multivariate function, as shown in Figure 2.16.

Figure 2.17 summarizes the relationship between all of the previously
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discussed concepts for a differentiable function.

Figure 2.17: A diagram to illustrate all
concepts related to stationary points for a
differentiable function:
1. A =⇒ B means A is B.
2. A 6⇐⇒ B means A and B are not the
same (disjoint).
3. A ⇐⇒ B means A and B are equiva-
lent.

Strictly speaking, only a global minimum point constitutes an optimal so-
lution to the optimization problem in Eq. (2.7). Global optimization methods
aim to find a global minimum for the optimization problem in Eq. (2.7).
However, for most objective functions, finding a global optimal point is an
extremely challenging task, in which the computational complexity often
exponentially grows with the number of free variables. As a result, we
often have to relax to resort to a local optimization strategy, where a local op-
timization algorithm can only find a local minimum for the optimization
problem in Eq. (2.7).

For any differentiable objective function, we have the following necessary
condition for any locally optimal solution:

Theorem 2.4.1 (necessary condition for unconstrained optimization)
Assume the objective function f (x) is differentiable everywhere. If x∗ is a local
minimum of Eq. (2.7), then x∗ must be a stationary point; that is, the gradient
vanishes at x∗ as ∇ f (x∗) = 0.

This theorem suggests a simple strategy to solve any unconstrained op-
timization problem in Eq. (2.7). If we can compute the gradient of the
objective function ∇ f (x), we can vanish it by solving the following:

∇ f (x) = 0,

which results in a group of n equations. If we can solve these equations
explicitly, their solution may be a locally optimal solution to the original
unconstrained optimization problem. Because the previous theorem only
states a necessary condition, the found solution may also be a local maxi-
mum or a saddle point of the original problem. In practice, we will have
to verify whether the solution found by vanishing the gradient is indeed a
true local minimum to the original problem.

If the objective function is twice differentiable, we can establish stronger
optimality conditions based on the second-order derivatives. In particular,
we can compute all second-order partial derivatives for the objective
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Figure 2.18: An illustration of several
different scenarios of a stationary point,
where the curvature of the surface is indi-
cated by the Hessian matrix:
1. Isolated minimum: H(x) � 0
2. Flat valley: H(x) � 0 and H(x) , 0
3. Plateau: H(x) = 0

function f (x) in the following n × n matrix:

H(x) =
[
∂2 f (x)
∂xi∂xj

]
n×n

=



∂2 f (x)
∂x2

1

∂2 f (x)
∂x1∂x2

· · ·
∂2 f (x)
∂x1∂xn

∂2 f (x)
∂x1∂x2

∂2 f (x)
∂x2

2
· · ·

∂2 f (x)
∂x2∂xn

...
...

. . .
...

∂2 f (x)
∂x1∂xn

∂2 f (x)
∂x2∂xn

· · ·
∂2 f (x)
∂x2

n


,

where H(x) is often called the Hessian matrix. Similar to the gradient, we
can compute the Hessian matrix at any point x for a twice-differentiable
function. The Hessian matrix H(x) describes the local curvature of the
function surface f (x) at x.

If we have obtained a stationary point x∗ by vanishing the gradient as
∇ f (x∗) = 0, we can know more about x∗ by examining the Hessian matrix
at x∗. If H(x∗) contains both positive and negative eigenvalues (neither
positive nor negative definite), x∗ must be a saddle point, as in Figure 2.16,
where the function value increases along some directions and decreases
along other directions. If H(x∗) contains all positive eigenvalues (positive
definite), x∗ is a strict isolated local minimum, where the function value
increases along all directions, as in Figure 2.18. If H(x∗) only contains
both positive and 0 eigenvalues (positive semidefinite), x∗ is still a local
minimum, but it is located at a flat valley in Figure 2.18, where the function
value remains constant along some directions related to 0 eigenvalues.
Finally, if the Hessian matrix also vanishes (i.e., H(x∗) = 0), x∗ is located
on a plateau of the function surface.

Based on the Hessian matrix, we can establish the following second-order
necessary or sufficient condition for any local optimal solution of Eq. (2.7)
as follows:

Theorem 2.4.2 (second-order necessary condition) Assume the objective
function f (x) is twice differentiable. If x∗ is a local minimum of Eq. (2.7), then

∇ f (x∗) = 0 and H(x∗) � 0.

Theorem 2.4.3 (second-order sufficient condition) Assume the objective
function f (x) is twice differentiable. If a point x∗ satisfies

∇ f (x∗) = 0 and H(x∗) � 0,

then x∗ is an isolated local minimum of Eq. (2.7).

The proofs of Theorems 2.4.1, 2.4.2, and 2.4.3 are straightforward, and they
are left for Exercise Q2.14.
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Figure 2.19: An illustration of the La-
grange necessary conditions for an objec-
tive function of two free variables f (x, y),
which is displayed with the contours, un-
der one equality constraint h(x, y) = 0,
which is plotted as the red curve.

min
x ,y

f (x, y),

subject to
h(x, y) = 0.

Equality Constraints

Let’s further discuss the optimality conditions for an optimization problem
under only equality constraints, such as

x∗ = arg min
x

f (x), (2.8)

subject to
hi(x) = 0 (i = 1, 2, · · · , m). (2.9)

Generally speaking, stationary points of the objective function f (x) usually
are not the optimal solution anymore because these stationary points may
not satisfy the constraints in Eq. (2.9). The Lagrange multiplier theorem
establishes a first-order necessary condition for the optimization under
equality constraints as follows:

Theorem 2.4.4 (Lagrange necessary conditions) Assume the objective func-
tion f (x) and all constraint functions {hi(x)} in Eq. (2.9) are differentiable.
If a point x∗ is a local optimal solution to the problem in Eq. (2.8), then the
gradients of these functions are linearly dependent at x∗:

∇ f (x∗) +
m∑
i=1

λi ∇hi(x∗) = 0,

where λi ∈ R (i = 1, 2, · · · , m) are called the Lagrange multipliers.

We can intuitively explain the Lagrange necessary conditions with the
simple example shown in Figure 2.19, where we minimize a function
of two variables (i.e., f (x, y)) under one equality constraint h(x, y) = 0
(plotted as the red curve). Looking at an arbitrary point A on the constraint
curve, the negative gradient (i.e., −∇ f (x, y)) points to a direction of the
fastest decrease of the function value, and ∇h(x, y) indicates the norm
vector of the curve at A. Imagine we want to move A along the constraint
curve to further decrease the function value; we can always project the
negative gradient to the tangent plane perpendicular to the norm vector.
If we move A slightly along this projected direction, the function value
will decrease accordingly. As a result, A cannot be a local optimal point
to the original optimization problem. We can continue to move A until
it reaches the point B, where the negative gradient is in the same space
of the norm vector so that the projection is not possible anymore. This
indicates that B may be a local optimal point, and we can verify that the
Lagrange condition holds at B.

The Lagrange necessary conditions suggest a convenient treatment to han-
dle equality constraints in any optimization problem in Eq. (2.8) and Eq.
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Figure 2.20: An illustration of the dis-
tance from any point x0 to a hyperplane
wᵀx + b = 0.

(2.9). For each equality constraint hi(x) = 0, we introduce a new free vari-
able λ, called a Lagrange multiplier, and construct the so-called Lagrangian
function:

L
(
x, {λi}

)
= f (x) +

m∑
i=1

λi hi(x).

If we can optimize the Lagrangian function with respect to the original
variables x and all Lagrange multipliers, we can derive the solution to
the original constrained optimization in Eq. (2.8). We can see that the
Lagrangian function is a useful technique to convert a constrained opti-
mization problem into an unconstrained one.

min
x,{λi }

L
(
x, {λi }

)
=⇒

∂L
(
x, {λi }

)
∂x

= 0.

This further leads to the same Lagrange
conditions in Theorem 2.4.4:

∇ f (x) +
m∑
i=1

λi ∇hi (x) = 0.

Example 2.4.1 As shown in Figure 2.20, compute the distance from a
point x0 ∈ Rn to a hyperplane wᵀx + b = 0 in the space x ∈ Rn, where
w ∈ Rn and b ∈ R are given.

We can formulate this problem as the following constrained optimization
problem:

d2 = min
x
‖x − x0‖

2,

subject to
wᵀx + b = 0.

We introduce a Lagrange multiplier λ for this equality constraint and
further construct the Lagrangian function as follows:

L(x, λ) = ‖x − x0‖
2 + λ

(
wᵀx + b

)
=

(
x − x0

)ᵀ (x − x0
)
+ λ

(
wᵀx + b

)
∂L(x, λ)
∂x

= 0 =⇒ 2
(
x − x0

)
+ λw = 0

=⇒ x∗ = x0 −
λ∗

2
w,

Substituting it into the constraint wᵀx∗ + b = 0, we can solve for λ∗ as
follows:

λ∗ =
2
(
wᵀx0 + b

)
wᵀw

=
2
(
wᵀx0 + b

)
‖w‖2

.

Finally, we have

d2 = ‖x∗ − x0‖
2 =

λ∗2

4
‖w‖2 =

|wᵀx0 + b|2

‖w‖2

=⇒ d =
|wᵀx0 + b|
‖w‖

. �
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Inequality Constraints

In this section, we will investigate how to establish the optimality condi-
tions for the general optimization problems in Eq. (2.4) (copied at left),
which involves both equality and inequality constraints.

x∗ = arg min
x

f (x),

subject to

hi (x) = 0 (i = 1, 2, · · · ,m)

g j (x) ≤ 0 (j = 1, 2, · · · , n).

We assume all these constraints define a
nonempty feasible set for x, denoted as Ω.

First of all, following a similar idea as before, we introduce a Lagrange
multiplier λi (∀i) for each equality constraint function and a nonnegative
Lagrange multiplier νj ≥ 0 (∀ j) for each inequality constraint function to
construct a Lagrangian function as follows:

L
(
x, {λi , νj }

)
= f (x) +

m∑
i=1

= 0︷  ︸︸  ︷
λi hi(x)+

n∑
j=1

≤ 0︷  ︸︸  ︷
νj gj (x)

≤ f (x) (∀x ∈ Ω).

Because of the constraints νj ≥ 0 (∀ j), this Lagrangian is a lower bound
of the original objective function f (x) in the feasible set Ω. We can further
minimize out the original variables x inside Ω so as to derive a function of
all Lagrange multipliers:inf is a generalization of min for open

sets.

L∗
(
{λi , νj }

)
= inf

x∈Ω
L
(
x, {λi , νj }

)
.

This function is often called the Lagrange dual function. From the above
definitions, we can easily show that the dual function is also a lower bound
of the original objective function:

L∗
(
{λi , νj }

)
≤ L

(
x, {λi , νj }

)
≤ f (x) (x ∈ Ω).

In other words, the Lagrange dual function is below the original objective
function f (x) for all x in Ω. Assuming x∗ is an optimal solution to the
original optimization problem in Eq. (2.4), we still have

L∗
(
{λi , νj }

)
≤ f (x∗). (2.10)

An interesting thing to do is to further optimize all Lagrange multipliers to
maximize the dual function in order to close the gap as much as possible,
which leads to a new optimization problem, as follows:

{λ∗i , ν∗j } = arg max
{λi ,νj }

L∗
(
{λi , νj }

)
,

subject to
νj ≥ 0 ( j = 1, 2, · · · , n).

This new optimization problem is called the Lagrange dual problem. In
contrast, the original optimization problem in Eq. (2.4) is called the primal
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Figure 2.21: An illustration of strong du-
ality occurring in a saddle point of the
Lagrangian function.

problem. From Eq. (2.10), we can immediately derive

L∗
(
{λ∗i , ν∗j }

)
≤ f (x∗).

If the original primary problem is convex optimization and some minor
qualification conditions (such as Slater’s condition [225]) are met, the gap
becomes 0, and the equality

L∗
(
{λ∗i , ν∗j }

)
= f (x∗)

holds, which is called strong duality. When strong duality holds, x∗ and
{λ∗i , ν∗j } form a saddle point of the Lagrangian L

(
x, {λi , νj }

)
, as shown in

Figure 2.21, where the Lagrangian increases with respect to x but decreases
with respect to {λi , νj }. In this case, both the primary and dual problems
are equivalent because they lead to the same optimal solution at the saddle
point.

When strong duality holds, we have

f (x∗) = L∗
(
{λ∗i , ν∗j }

)
≤ L

(
x∗, {λ∗i , ν∗j }

)
= f (x∗) +

m∑
i=1

λ∗i hi(x∗)︸    ︷︷    ︸
= 0

+

n∑
j=1

ν∗j gj (x
∗).

From this, we can see that
∑n

j=1 ν∗j gj (x
∗) ≥ 0. On the other hand, by

definition, we have ν∗j gj (x
∗) ≤ 0 for all j = 1, 2 · · · , n. These results further

suggest the so-called complementary slackness conditions:

ν∗j gj (x
∗) = 0 ( j = 1, 2, · · · , n).

Finally, we summarize all of the previous results, called Karush–Kuhn–
Tucker (KKT) conditions [124, 135], in the following theorem:

Theorem 2.4.5 (KKT necessary conditions) If x∗ and {λ∗i , ν∗j } form a saddle
point of the Lagrangian function L

(
x, {λi , νj }

)
, then x∗ is an optimal solution

to the problem in Eq. (2.4). The saddle point satisfies the following conditions:
1. Stationariness: Note that the stationariness condition is

derived as such because the saddle point
is a stationary point, where the gradient
vanishes.∇ f (x∗) +

m∑
i=1

λ∗i ∇hi(x∗) +
n∑
j=1

ν∗j ∇gj (x
∗) = 0.

2. Primal feasibility:

hi(x∗) = 0 and gj (x∗) ≤ 0 (∀i = 1, 2, · · · , m; j = 1, 2, · · · , n).
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3. Dual feasibility:
ν∗j ≥ 0 (∀ j = 1, 2, · · · , n).

4. Complementary slackness:

ν∗j gj (x
∗) = 0 (∀ j = 1, 2, · · · , n).

Next, we will use an example to show how to apply the KKT conditions
to solve an optimization problem under inequality constraints.

Example 2.4.2 Compute the distance from a point x0 ∈ Rn to a half-
space wᵀx + b ≤ 0 in the space x ∈ Rn, where w ∈ Rn and b ∈ R are
given.

Similar to Example 2.4.1, we can formulate this problem as the following
constrained optimization problem:

d2 = min
x
‖x − x0‖

2,

subject to
wᵀx + b ≤ 0.

We introduce a Lagrange multiplier ν for the inequality constraint. As
opposed to Example 2.4.1, because this is an inequality constraint, we
have the complementary slackness and dual-feasibility conditions:

ν∗
(
wᵀx∗ + b

)
= 0 and ν∗ ≥ 0.

Accordingly, we can conclude that the optimal solution x∗ and ν∗ must be
one of the following two cases:

(a) wᵀx∗ + b = 0 and ν∗ ≥ 0,

(b) ν∗ = 0 and wᵀx∗ + b ≤ 0.

For case (a), where wᵀx∗ + b = 0 must hold, we can derive from the
stationariness condition in the same way as in Example 2.4.1:

L(x, ν) = ‖x − x0‖
2 + ν

(
wᵀx + b

)
,

∂L(x, ν)
∂x

= 0 =⇒ ν∗ =
2
(
wᵀx0 + b

)
‖w‖2

.

If wᵀx0 + b ≥ 0, corresponding to the case where the half-space does not
contain x0 (see the left side in Figure 2.22), we have ν∗ ≥ 0 for this case.
This leads to the same problem as Example 2.4.1. We can finally derive
d = (wᵀx0 + b)/‖w‖ for this case. However, if wᵀx0 + b < 0, corresponding
to the case where the half-space contains x0 (see the right side in Figure
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Figure 2.22: An illustration of two cases
when computing the distance from a
point x0 to a half-space wᵀx + b ≤ 0:
1. Left: x0 not in the half-space
2. Right: x0 in the half-space

2.22), then we have ν∗ < 0. This result is invalid because it violates the
dual-feasibility condition.

Moreover, let us consider case (b), where ν∗ = 0 and wᵀx∗ + b ≤ 0 must
hold. After substituting ν∗ = 0 into the stationariness condition, we can
derive x∗ = x0 and d = 0 immediately for this case. This is the correct result
for the case where the half-space contains x0 in the right side of Figure
2.22.

Finally, we can summarize these results as follows:

d =

{
wᵀx0+b
‖w‖ if wᵀx0 + b ≥ 0
0 if wᵀx0 + b ≤ 0.

�

2.4.3 Numerical Optimization Methods

For many optimization problems arising from real-world applications, the
analytic methods based on the optimality conditions do not always lead
to a useful closed-form solution. For these practical problems, we have to
rely on numerical methods to derive a reasonable solution in an iterative
fashion. Depending on what information is used in each iteration of these
numerical methods, they can be roughly classified into several categories,
namely, the zero-order, first-order, and second-order methods. In this section,
we will briefly review some common methods from each category but
focus more on the first-order methods because they are the most popular
choices in machine learning. For simplicity, we will use the unconstrained
optimization problem

arg min
x∈Rn

f (x)

as an example to introduce these numerical methods, but many numerical
methods can be easily adapted to deal with constraints. For example, we can project an uncon-

strained gradient into the feasible set for
all first-order methods, leading to the so-
called projected gradient descent method.Zero-Order Methods

The zero-order methods only rely on the zero-order information of the
objective function, namely, the function value f (x). We usually need to
build a coordinate grid for all free variables in f (x) and then use the grid
search strategy to exhaustively check the function value at each point
until a satisfactory solution is found. This method is simple, but it suffers
from the curse of dimensionality because the number of points in a grid
exponentially grows with the number of free parameters. In machine
learning, the zero-order methods are mainly used only for the cases where
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Figure 2.23: An illustration of the gradi-
ent descent method, where two trajecto-
ries indicate two initial points used by the
algorithm.

Figure 2.24: An illustration of how a large
step size may affect the convergence of
the gradient descent method.

we have a small number of variables (less than 10), such as hyperparameter
optimization.

First-Order Methods

The first-order methods can access both the zero-order and the first-order
information of the objective function, namely, the function value f (x) and
the gradient ∇ f (x). As we have learned, the gradient ∇ f (x) points to a
direction of the fastest increase of the function value at x. As shown in
Figure 2.23, starting from any point on the function surface, if we move
a sufficiently small step along the direction of the negative gradient, it is
guaranteed that the function value will be more or less decreased. We can
repeat this step over and over until it converges to any stationary point.
This idea leads to a simple iterative optimization method, called gradient
descent (a.k.a. steepest descent), shown in Algorithm 2.1.

Algorithm 2.1 Gradient Descent Method

randomly choose x(0), and set η0
set n = 0
while not converged do

update: x(n+1) = x(n) − ηn ∇ f (x(n))
adjust: ηn → ηn+1
n = n + 1

end while

Because the gradient cannot tell us how much we should move along the
direction, we have to use a manually specified step size ηn for each move.
The key in the gradient descent method is how to properly choose the step
size for each iteration. If the step sizes are too small, the convergence will
be slow because it needs to run too many updates to reach any stationary
point. On the other hand, if the step sizes are too large, each update may
overshoot the target and cause the fluctuation shown in Figure 2.24. As we
come close to a stationary point, we usually need to use an even smaller
step size to ensure the convergence. As a result, we need to follow a
schedule to adjust the step size at the end of each iteration. When we
run gradient descent Algorithm 2.1 from any starting point x(0), it will
generate a trajectory

{
x(0), x(1), x(2), · · ·

}
on the function surface, which

gradually converges to a stationary point of the objective function. As
shown in Figure 2.23, each trajectory heavily depends on the initial point.
In other words, if we start from a different initial point x(0) at the beginning,
we may eventually end up with a different solution. Choosing a good
initial point is another key factor in ensuring the success of the gradient
descent method.
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The gradient descent method is conceptually simple and only needs to use
the gradient, which can be easily computed for almost any meaningful
objective function. As a result, the gradient descent method becomes a
very popular numerical optimization method in practice. If the objective
function is smooth and differentiable, we can theoretically prove that the
gradient descent algorithm is guaranteed to converge to a stationary point
as long as a sufficiently small step size is used at each iteration (see Exercise
Q2.16). However, the convergence rate is relatively slow (a sublinear rate).
If we want to achieve ‖∇ f (x(n))‖ ≤ ε , we need to run at least O(1/ε2)

iterations. However, if we can make stronger assumptions on the objective
function, such as f (x) is convex and at least twice differentiable and its
derivatives are sufficiently smooth, we can prove that the gradient descent
algorithm is guaranteed to converge to a local minimum x∗ if small enough
steps are used. Under these conditions, the gradient descent method can
achieve a much faster convergence rate (a linear rate). If we want to achieve
‖x(n) − x∗‖ ≤ ε , we just need to run approximately O(ln(1/ε)) iterations.

If a sequence {xk } converges to the limit
x∗: limk→∞ xk = x∗. The rate of conver-
gence is defined as

µ = lim
k→∞

|xk+1 − x
∗ |

|xk − x∗ |
.

The convergence is said to be


superlinear if µ = 0,
linear if 0 < µ < 1,
sublinear if µ = 1.

Example 1: For a sequence of exponen-
tially decaying errors:

|xk − x
∗ | = C ρk ,

where 0 < ρ < 1. We can verify its conver-
gence rate is linear because

µ =
|xk+1 − x

∗ |

|xk − x∗ |
= ρ.

For any error tolerance ε > 0, if we want
to achieve |xk − x∗ | ≤ ε , we have to ac-
cess xk with

k ≥
lnC + ln 1

ε

ln 1
ρ

≈ O
(
ln

1
ε

)
.

Example 2: For another sequence of de-
caying errors:

|xk − x
∗ | =

C
√
k

,

its convergence rate is sublinear as

µ = lim
k→∞

√
k

√
k + 1

= 1.

To achieve |xk − x∗ | ≤ ε , we need

k ≥
C2

ε 2 ≈ O(
1
ε 2 ).

In machine learning, we often need to optimize an objective function that
can be decomposed as a sum of many homogeneous components:

f (x) =
1
N

N∑
i=1

fi(x).

For example, the objective function f (x) represents the average loss mea-
sured on all samples in a training set, and each fi(x) indicates the loss
measure on each training sample. If we use the gradient descent Algo-
rithm 2.1 to minimize this objective function, at each iteration, we need to
go through all training samples to compute the gradient as follows:

∇ f (x) =
1
N

N∑
i=1

∇ fi(x).

If the training set is large, this step is extremely expensive. To address this
issue, we often adopt a stochastic approximation strategy to compute the
gradient, where the gradient is approximated as ∇ fk (x) using a randomly
chosen sample k rather than being averaged over all samples. This idea
leads to the well-known stochastic gradient descent (SGD) method [24],
as shown in Algorithm 2.2.

In Algorithm 2.2, each ∇ fk (x) can be viewed as a noisy estimate of the true
gradient ∇ f (x). Because ∇ fk (x) can be computed in a relatively cheap way
in SGD, we can afford to run much more iterations using a much smaller
step size than in the regular gradient descent method. By doing so, the
SGD algorithm can converge to a reasonable solution, even in a much
shorter training time. Moreover, many empirical results have shown that
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Algorithm 2.2 Stochastic Gradient Descent (SGD) Method

randomly choose x(0), and set η0
set n = 0
while not converged do

randomly choose a sample k
update: x(n+1) = x(n) − ηn ∇ fk (x(n))
adjust: ηn → ηn+1
n = n + 1

end while

small noises in gradient estimation can even help to converge to a better
solution because small noises make the algorithm escape from poor local
minimums or saddle points.

Along these lines, an enhanced SGD version is proposed in Algorithm 2.3,
where the gradient is estimated at each step, not using only a single sample
but from a small subset of randomly chosen samples. Each subset is often
called a mini-batch. The samples in a mini-batch are randomly chosen every
time to ensure all training samples are accessed equally. In Algorithm 2.3,
called mini-batch SGD, we can choose the size of all mini-batches to control
how much noise is injected into each gradient estimation.

Algorithm 2.3 Mini-Batch SGD

randomly choose x(0), and set η0
set n = 0
while not converged do

randomly shuffle all training samples into mini-batches
for each mini-batch B do

update: x(n+1) = x(n) − ηn
|B |

∑
k∈B ∇ fk (x)

|B | denotes the number of samples in B. adjust ηn → ηn+1
n = n + 1

end for
end while

The mini-batch SGD algorithm is a very flexible optimization method
because we can always choose several key hyperparameters properly,
such as the mini-batch size, the initial learning rate, and the strategy to
adjust the learning rate at the end of each step, to make the optimization
process converge to a reasonable solution for a large number of practical
problems. Therefore, the mini-batch SGD is often regarded as one of the
most popular optimization methods in machine learning.
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Second-Order Methods

The second-order optimization methods require the use of the zero-order,
first-order, and second-order information of the objective function, namely,
the function value f (x), the gradient ∇ f (x), and the Hessian matrix H(x).

For a multivariate function f (x), we can use Taylor’s theorem to expand it
around any fixed point x0, as follows:

f (x) = f (x0) +
(
x − x0)

ᵀ∇ f (x0) +
1
2
(
x − x0)

ᵀH(x0)
(
x − x0) + o

(
‖x − x0‖

2) .
We first compute the gradient as

∇ f (x) =
∂ f (x)
∂x

= ∇ f (x0) +H(x0)
(
x − x0).

Then we vanish the gradient ∇ f (x) = 0:

∇ f (x0) +H(x0)
(
x − x0) = 0

=⇒ x∗ = x0 −H−1(x0)∇ f (x0).

If we ignore all high-order terms, we can derive the stationary point by
vanishing the gradient x∗, as follows:

∇ f (x) =
∂ f (x)
∂x

= 0 =⇒ x∗ = x0 −H−1(x0) ∇ f (x0).

If f (x) is a quadratic function, no matter where we start, we can use this
formula to derive the stationary point in one step. For a general objective
function f (x), we can still use the updating rule

x(n+1) = x(n) −H−1(x(n)) ∇ f (x(n))

in an iterative algorithm, as in Algorithm 2.1, which leads to the Newton
method. If the objective function is convex and at least twice differentiable
and its derivatives are sufficiently smooth, the Newton method is guaran-
teed to converge to a local minimum x∗, and it can achieve a superlinear rate.
If we want to achieve ‖x(n) − x∗‖ ≤ ε , we just need to run approximately
O(ln ln(1/ε)) iterations.

The Newton method is fast in terms of how many iterations are needed
to converge. However, each iteration in the Newton method is actually
extremely expensive because it involves computing, maintaining, and
even inverting a large Hessian matrix. In most machine learning problems,
it is impossible to handle the Hessian matrix because we usually have a
large number of free variables in x. This is why the Newton method is
seldom used in machine learning. Alternatively, there are many approx-
imate second-order methods, called quasi-Newton methods, that aim to
approximate the Hessian matrix in certain ways (e.g., using some diago-
nal or block-diagonal matrices to approximate the real Hessian so as to
make matrix inversion possible in the updating formula). The popular
quasi-Newton methods include the DFP [65], the BFGS [65], Quickprop
[60], and the Hessian-free method [175, 160].
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Exercises

Q2.1 Given two matrices, A ∈ Rm×n and B ∈ Rm×n, prove that

tr(AᵀB) = tr(ABᵀ) = tr(BAᵀ) = tr(BᵀA) =
m∑
i=1

n∑
j=1

ai jbi j ,

where ai j and bi j denote an element in the matrices A and B, respectively.

Q2.2 For any two square matrices, X ∈ Rn×n and Y ∈ Rn×n, show that

a. tr(XY) = tr(YX), and
b. tr(X−1YX) = tr(Y) if X is invertible.

Q2.3 Given two sets of m vectors, xi ∈ Rn and yi ∈ Rn for all i = 1, 2, · · · , m, verify that the summations∑m
i=1 xix

ᵀ
i and

∑m
i=1 xiy

ᵀ
i can be vectorized as the following matrix multiplications:

m∑
i=1

xix
ᵀ
i = XXᵀ and

m∑
i=1

xiy
ᵀ
i = XYᵀ,

where X =
[
x1 x2 · · · xm

]
∈ Rn×m and Y =

[
y1 y2 · · · ym

]
∈ Rn×m.

Q2.4 Given x ∈ Rn, z ∈ Rm, and A ∈ Rm×n (m < n),

a. prove that zᵀAx = tr
(
x zᵀA

)
,

b. compute the derivative (∂/∂x) ‖z −Ax‖2, and
c. compute the derivative (∂/∂A) ‖z −Ax‖2.

Q2.5 For any matrix A ∈ Rn×n, if we use ai (i = 1, 2, . . . , n) to denote the ith column of the matrix A and use
gi j = | cos θi j | = |ai · aj |/(‖ai ‖‖aj ‖) to denote the absolute cosine of the angle θi j between any two vectors
ai and aj (for all 1 ≤ i, j ≤ n), show that

∂

∂A

( n∑
i=1

n∑
j=i+1

gi j

)
= (D −B)A,

where D is an n × n matrix with its elements computed as di j = sign(ai · aj )/(‖ai ‖‖aj ‖) (1 ≤ i, j ≤ n), and
B is an n × n diagonal matrix with its diagonal elements computed as bii = (

∑
j=1 gi j )/‖ai ‖2 (1 ≤ i ≤ n).

Q2.6 Consider a multinomial distribution of m discrete random variables as follows:

Pr(X1 = r1, X2 = r2, . . . , Xm = rm) = Mult
(
r1, r2, . . . , rm

�� N , p1, p2, . . . , pm
)

=
N !

r1! r2! · · · rm!
pr1

1 pr2
2 · · · prmm

a. Prove that the multinomial distribution satisfies the sum-to-1 constraint
∑

X1,· · · ,Xm
Pr(X1 = r1, X2 =

r2, · · · , Xm = rm) = 1.
b. Show the procedure to derive the mean and variance for each Xi (∀i = 1, 2, . . . , m) and the covariance

for any two Xi and Xj (∀i, j = 1, 2, . . . , m).
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Q2.7 Assume m continuous random variables {X1, X2, . . . , Xm} follow the Dirichlet distribution as follows:

Dir
(
p1, p2, · · · , pm

�� r1, r2, . . . , rm
)
=
Γ(r1 + · · · + rm)
Γ(r1) · · · Γ(rm)

pr1−1
1 × pr2−1

2 × · · · × prm−1
m .

Derive the following results:

E[Xi] =
ri
r0

var(Xi) =
ri(r0 − ri)
r2

0 (r0 + 1)
cov

(
Xi , Xj

)
= −

rirj
r2

0 (r0 + 1)
,

where we denote r0 =
∑m

i=1 ri .
Hints: Γ(x + 1) = x · Γ(x).

Q2.8 Assume n continuous random variables {X1, X2, · · · , Xn} jointly follow a multivariate Gaussian distribu-
tion N(x | µ, Σ).

a. For any random variable Xi (∀i), derive its marginal distribution p(Xi).
b. For any two random variables Xi and Xj (∀i, j), derive the conditional distribution p(Xi |Xj ).
c. For any subset of these random variables S, derive the marginal distribution for S.
d. Split all n random variables into two disjoint subsets S1 and S2, and then derive the conditional

distribution p(S1 |S2).

Hints: Some identities for the inversion and determinant of a symmetric block matrix, where Σ11 ∈ Rp×p ,
Σ12 ∈ Rp×q , Σ22 ∈ Rq×q , are as follows:[

Σ11 Σ12
Σ
ᵀ
12 Σ22

]−1

=

[
Σ−1

11 −NM−1Nᵀ −NM−1

−
(
NM−1)ᵀ M−1

]
����� [Σ11 Σ12
Σ
ᵀ
12 Σ22

] ����� = ��Σ11
�� ��M��,

where M =
(
Σ22 − Σ

ᵀ
12Σ
−1
11Σ12

)
, and N = Σ−1

11Σ12.

Q2.9 Assume a random vector x ∈ Rn follows a multivariate Gaussian distribution (i.e., p(x) = N
(
x
�� µ, Σ

)
).

If we apply an invertible linear transformation to convert x into another random vector as y = Ax + b
(A ∈ Rn×n and b ∈ Rn), prove that the joint distribution p(y) is also a multivariate Gaussian distribution,
and compute its mean vector and covariance matrix.

Q2.10 Show that any two random variables X and Y are independent if and only if any one of the following
equations holds:

H(X ,Y ) = H(X) + H(Y )

H(X |Y ) = H(X)

H(Y |X) = H(Y )
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Q2.11 Show that mutual information satisfies the following:

I(X ,Y ) = H(X) − H(X |Y )

= H(Y ) − H(Y |X)

= H(X) + H(Y ) − H(X ,Y ).

Q2.12 Assume a random vector x =
[

x1
x2

]
follows a bivariate Gaussian distribution: N(x | µ,Σ), where µ =[

µ1
µ2

]
is the mean vector and Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
is the covariance matrix. Derive the formula to

compute mutual information between x1 and x2 (i.e., I(x1, x2)).

Q2.13 Given two multivariate Gaussian distributions: N(x | µ1,Σ1) and N(x | µ2,Σ2), where µ1 and µ2 are the
mean vectors, and Σ1 and Σ2 are the covariance matrices, derive the formula to compute the KL divergence
between these two Gaussian distributions.

Q2.14 Prove Theorems 2.4.1, 2.4.2, and 2.4.3.

Q2.15 Compute the distance of a point x0 ∈ Rn to

a. the surface of a unit ball: ‖x‖ = 1;
b. a unit ball ‖x‖ ≤ 1;
c. an elliptic surface xᵀAx = 1, where A ∈ Rn×n and A � 0; and
d. an ovoid xᵀAx ≤ 1, where A ∈ Rn×n and A � 0.

Hints: Give a numerical procedure if no closed-form solution exists.

Q2.16 Assume a differentiable objective function f (x) is Lipschitz continuous; namely, there exists a real constant
L > 0, and for any two points x1 and x2,

�� f (x1) − f (x2)
�� ≤ L ‖x1 − x2‖ always holds. Prove that the gradient

descent Algorithm 2.1 always converges to a stationary point, namely, limn→∞ ‖∇ f (x(n))‖ = 0, as long as
all used step sizes are small enough, satisfying ηn < 1/L.
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When we talk about machine learning in an application-oriented context,
we mostly mean supervised machine learning because it is currently re-
garded as the most mature machine learning technique and has already
made significant commercial impacts in many real-world tasks. Under
the conditions of big data and big models, when we can access plenty of
labeled training data as well as sufficient computing resources to build
very large models, supervised machine learning is said to be a solved
problem because today’s supervised learning methods yield acceptable
performance for these scenarios. This chapter outlines all supervised learn-
ing methods, from a high level to give a big picture; technical details
follow in the subsequent chapters.

See the definition of supervised learning in
Section 1.2.2.

3.1 Overview

From a technical perspective, every machine learning problem is com-
posed of several key choices to be made in a standard pipeline of five
steps.

Step 1: Feature Extraction (Optional)

Derive compact and uncorrelated features to represent raw data.

Feature extraction is discussed in Chap-
ter 4.

All machine learning techniques heavily rely on training data. In order to
build a well-performing machine learning system, it is critical to collect
enough (actually, it’s never enough—the more, the better) in-domain train-
ing samples under the same (or close enough) conditions that exist where
the system will be eventually deployed. However, raw data collected from

3 Supervised Machine Learning (in a Nutshell)
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most real-world applications are of high dimension, and the dimensions
are always highly correlated. To facilitate the following steps, sometimes
we may apply certain automatic dimensionality-reduction methods to
derive more compact and uncorrelated features to represent raw data.
Alternatively, we may explore domain knowledge to manually extract
representative features from raw data, which is quite heuristic in nature
and normally called feature engineering.

See dimensionality reduction in Section
4.1.3.

See feature engineering in Section 4.1.1.

It is worth mentioning that many recent deep learning methods based on
neural networks demonstrate the strong capability to directly take high-
dimensional raw data as input, which totally bypasses feature extraction
as an explicit step. These methods are usually called end-to-end learning,
and they are still actively studied at present.See end-to-end learning in Section 8.5.

Step 2: Choose a proper model from List A.

Based on the nature of the given problem, choose a good machine
learning model from the candidates listed in List A.

Machine learning has been an active research area for decades and has
provided a rich set of model choices for a variety of data types and prob-
lems. List A presents a list of impactful models that have been extensively
studied in the literature. Throughout this book, a distinction is made be-
tween two categories of these models, namely, discriminative models and
generative models.See the definition of discriminative models

in Section 5.1 and that of generative models
in Section 10.1. Supervised machine learning problems deal with labeled data, where

each input sample, represented by its feature vector x ∈ Rd , is labeled as
a desirable target output y. Discriminative models take a deterministic
approach to this learning problem. We simply assume all input samples
and their corresponding output labels are generated by an unknown but
fixed target function (i.e., y = f (x)). Different discriminative models at-
tempt to estimate the target function from a different function family,
ranging from simple linear functions and bilinear/quadratic functions to
neural networks (as universal function approximators). On the other hand,
generative models take a probabilistic approach to this learning problem.
We assume both input x and output y are random variables that follow
an unknown joint distribution (i.e., p(x, y)). Once the joint distribution is
estimated, the relation between input x and output y may be determined
based on the corresponding conditional distribution p(y |x). Generative
models aim to estimate the joint data distribution from the given train-
ing data. Different generative models search for the best estimate of the
unknown joint distribution from a different family of probabilistic mod-
els, ranging from simple uniform models (Gaussian/multinomial) and
complex mixture/entangled models to very general graphical models. In
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particular, some advanced probabilistic models are suitable for modeling
sequential data, such as Markov chain models, hidden Markov models,
and state-space models.

List A: Machine Learning Models

I Discriminative models:

• Linear models (§6)
• Bilinear models, quadratic models (§7.3, §7.4)
• Logistic sigmoid, softmax, probit (§6.4)
• Nonlinear kernels (§6.5.3)
• Decision trees (§9.1.1)
• Neural networks (§8):

∗ Full-connection neural networks (FCNNs)
∗ Convolutional neural networks (CNNs)
∗ Recurrent neural networks (RNNs)
∗ Long short-term memory (LSTM)
∗ Transformers, and so on

I Generative models:

• Gaussian models (§11.1)
• Multinomial models (§11.2)
• Markov chain models (§11.3)
• Mixture models (§12)

∗ Gaussian mixture models (§12.3)
∗ Hidden Markov models (§12.4)

• Entangled models (§13)
• Deep generative models (§13.4)

∗ Variational autoencoders (§13.4.1)
∗ Generative adversarial nets (§13.4.2)

• Graphical models (§15):
∗ Bayesian networks (§15.2; naïve Bayes, latent

Dirichlet allocation [LDA])
∗ Markov random fields (§15.3; e.g., conditional ran-

dom field, restricted Boltzmann machine)
• Gaussian processes (§14.4)
• State-space (dynamic) models [122]

Step 3: Choose a learning criterion from List B.

Choose an appropriate learning criterion from List B and (if necessary)
a regularization term, which forms an objective function of model
parameters.
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List B: Machine Learning Criteria

I For discriminative models:

• Least-square error (§5.1)
• Minimum classification error (§6.3)
• Maximum margin (§6.5.1)
• Minimum Lp norm (§7.1.2)
• Minimum cross-entropy (§8.3.1)

I For generative models:

• Maximum likelihood (§10.4.1)
• Maximum conditional likelihood (§15.3.2)
• Maximum a posteriori (§14.1.2)
• Maximum marginal likelihood (§14.2.1)
• Minimum KL divergence (§14.3.2)

For discriminative models, once we have constrained the function family
to be learned from, we already know the functional form of the chosen
models, and what remains undetermined has been reduced to the un-
known parameters related to the chosen models. We can choose certain
criteria to measure some empirical error counts of the selected models
over the training data as a function of unknown model parameters. The
popular ways to measure training errors include square error, classifica-
tion error, cross-entropy, and so forth. Furthermore, in order to combat
overfitting, in many cases, we may also include some regularization-related
penalty terms to make the learning less aggressive, such as a maximum
margin term and minimum Lp norm terms.

For generative models, once we have constrained the family of proba-
bilistic models to be used to learn the unknown joint distribution, the
only unknown things are similarly reduced to be the parameters of the
probabilistic models. In these cases, some likelihood-related criteria can
be chosen to measure how the chosen probabilistic models match the
given training data, which are believed to be randomly drawn from the
unknown joint distribution. The selected likelihood measure is essentially
a function of unknown model parameters. Here, if necessary, some regu-
larization terms may also be added to alleviate overfitting in learning, such
as Bayes priors.

See the definition of likelihood in Section
10.4.1.

Step 4: Choose an optimization algorithm from list C.

Considering the characteristics of the derived objective function, use
an appropriate optimization algorithm from List C to learn the model
parameters.
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List C: Optimization Methods

I Grid search (§2.4.3)
I Gradient descent (§2.4.3)
I SGD (§2.4.3)
I Subgradient methods [223]
I Newton method (§2.4.3)
I Quasi-Newton methods (§2.4.3):

• Quickprop, R-prop
• Broyden–Fletcher–Goldfarb–Shannon (BFGS), limited-

memory BFGS (L-BFGS)

I EM (§12.2)
I Sequential line search [27]
I ADMM [29]
I Gradient boosting (§9.3.1)

Once the objective functions are determined, machine learning is turned
into a standard optimization problem, where the objective function needs
to be maximized or minimized with respect to the unknown model pa-
rameters. Unfortunately, no closed-form solution is available for most
machine learning problems. We have to rely on some numerical meth-
ods to iteratively optimize the underlying objective function to derive
the model parameters. In many cases, we can use generic optimization
methods, such as gradient descent and quasi-Newton methods. For some
particular models, we have the choice to use specialized algorithms that
are more efficient, such as expectation-maximization (EM), line search,
and alternating direction method of multipliers (ADMM).

For many real-world problems, where we have to use very large models
to accommodate a huge amount of training data, this step usually leads
to some extremely large-scale optimization problems that may involve
millions or even billions of free variables. The primary concern in choosing
a suitable optimization method is whether it is efficient enough in terms
of both running time and memory consumption. This is why the simplest
optimization methods, such as stochastic gradient descent (SGD) and its
variants, thrive in practice.

Step 5: Perform empirical evaluation and (optional) derive theoreti-
cal guarantees.

Use held-out data to empirically evaluate the performance of learned
models, and if possible, derive theoretical guarantees on whether/why
the learning method converges to a good solution and whether/why
the learned model generalizes well to all unseen data.
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The ultimate goal in machine learning is to develop good models that
perform well not only with the given training data but for any new unseen
samples that are statistically similar to the training data. In practice, the
performance of the learned models can always be empirically evaluated
based on a held-out data set that is not used anywhere in the earlier steps.
The held-out test set should match the real conditions where the machine
learning systems will eventually operate. Also, the test set needs to be
sufficiently large to provide statistically significant results. Finally, the
same test set should not be repeatedly used to evaluate the same learning
method because this may result in overfitting.

Empirical evaluation is easy, but it may not be fully satisfactory for many
reasons. If possible, it is better to seek strong theoretical guarantees on
whether and why the learning method converges to a good solution and
whether and why the learned model generalizes well to all possible unseen
data. Strict theoretical analysis is challenging for many popular machine
learning methods, but it should be stressed further as a critical research
goal in machine learning.

3.2 Case Studies

Every machine learning problem involves three critical choices to be made
from Lists A, B, and C. Of course, not all combinations from these lists
make technical sense. The following list highlights some popular machine
learning methods that have been extensively studied in the past few
decades and explains how we make good choices from among the three
dimensions of the representative machine learning methods.

I Linear regression = (linear model) × (least-square error)
See linear regression in Section 6.2. Linear regression adopts the simplest model form and the most

tractable criterion to measure loss so that it enjoys a simple closed-
form solution. Linear regression is probably the most straightfor-
ward machine learning method. It works well for small data sets,
and its results may be intuitively interpreted. As a result, linear re-
gression plays an important role in finance, economics, and other
social sciences.

I Ridge regression = (linear model) × (least-square error + min L2

norm)
See ridge regression in Section 7.2. Ridge regression is a regularization method that imposes a simple L2

norm-minimization on top of the linear regression formula. A simple
closed-form solution can also be derived for ridge regression. It may
help to mitigate some estimation problems in linear regression with
a large number of parameters, such as overfitting.
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I LASSO = (linear model) × (least-square error + min L1 norm) ×
(gradient descent)

See LASSO in Section 7.2.LASSO, standing for least absolute shrinkage and selection operator, is
another regularized regression analysis that operates by imposing
L1 norm minimization on top of linear regression. There is no closed-
form solution to LASSO, and we have to use iterative numerical
methods, such as gradient descent. Alternatively, we can also use
subgradient methods to solve it because the L1 norm is not strictly
differentiable. As a result of the L1 norm regularization, LASSO
yields sparse solutions to regression analysis. Therefore, LASSO may
be used for variable selection and penalized estimation.

I Logistic regression = (linear model + logistic sigmoid)× (maximum
likelihood) × (gradient descent)

See logistic regression in Sections 6.4 and 11.4.Logistic regression embeds a linear model into a logistic sigmoid
function to generate probability-like outputs between 0 and 1, which
can be combined to generate a likelihood function for any given
training set. Because of the nonlinearity of the sigmoid function,
we have to rely on gradient descent methods to iteratively solve
logistic regression. Logistic regression is particularly useful for many
simple two-class binary classification problems, which involve a
large number of features derived from feature engineering.

I Linear SVM = (linear model) × (maximum margin) × (gradient
descent) Linear support vector machines (SVMs) estimate a linear
model based on the maximum margin criterion, equivalent to min-
imizing the L2 norm, for linearly separable two-class classification
problems. The formulation of SVM is elegant because it possesses
a unique globally optimal solution, which can be easily found by
many optimization methods, such as gradient descents.

See linear SVM in Section 6.5.1.

I Nonlinear SVM = (nonlinear kernels + linear model )× (maximum
margin) × (gradient descent)

See nonlinear SVM in Section 6.5.3.Nonlinear SVMs use the famous kernel trick to introduce a nonlinear
kernel function on top of a linear SVM formulation. As a result, non-
linear SVMs may result in highly nonlinear boundaries to separate
classes. The beauty of the kernel trick is that nonlinear SVMs share
the same mathematical simplicity as linear SVMs. Therefore, nonlin-
ear SVMs can be solved by the same optimization methods, such as
gradient descents.

I Soft SVM = (kernels + linear model) × (minimum linear error +
maximum margin) × (gradient descent)

See soft SVM in Section 6.5.2.Soft SVMs extend regular SVMs into some hard pattern-classification
problems, where different classes are not linearly separable. Soft
SVMs combine the maximum-margin criterion with the minimiza-
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tion of a linear tolerable error count. This specialized linear error term
is introduced in such a way that the combined objective function
still maintains the nice property of having a unique globally optimal
solution. Therefore, soft SVMs can still be numerically solved with
similar optimization methods as regular SVMs.

I Matrix factorization = (bilinear model) × (least-square error + min
L2 norm) × (gradient descent)

See matrix factorization in Section 7.3. Matrix factorization uses a bilinear model to reconstruct a very large
matrix based on the product of two lower-rank matrices. In recom-
mendation systems, this method leads to a class of the so-called
collaborative filtering algorithms, where the large matrix is the par-
tially observed user–item interaction matrix. Some gradient descent
methods can be used to learn the two lower-rank matrices by mini-
mizing the reconstruction error and some L2 regularization terms.
This method is also used for natural language processing, called
vector space model or latent semantic analysis, where the large matrix is
the term-document matrix computed from a large text corpus.

I Dictionary learning = (bilinear model) × (least-square error + min-
imum L1 norm) × (gradient descent)

See dictionary learning in Section 7.4. Dictionary learning is also called sparse representation learning or
sparse approximating. It adopts a simple idea that all real-world obser-
vations can be reconstructed based on a huge dictionary and some
sparse codes. A bilinear model is usually used to combine the large
dictionary with a sparse code to generate each real observation. The
large dictionary and sparse codes are jointly learned from many
observations by minimizing the L1 norm of the codes under a toler-
able range of reconstruction errors. Similar to LASSO, the L1 norm
is imposed to ensure the sparseness of the learned codes. In prac-
tice, sparse coding can be used to learn representations for visual or
acoustic signals, such as images, speech, audio.

I Topic modeling = (LDA) × (maximum marginal likelihood) × (EM
algorithm)

See topic modeling in Section 15.2.6. Topic modeling adopts a specially structured graphical model, LDA,
to model text documents. The hierarchical structure of LDA helps
to discover the abstract topics that occur in a collection of text doc-
uments. The parameters of LDA can be estimated by maximizing
the so-called marginal likelihood, where all intermediate variables are
first marginalized. The marginal likelihood of LDA contains some
intractable integrals, and a lower bound of the marginal likelihood
is instead optimized with a specific optimization method, the EM
algorithm, in an iterative way. LDA is a popular graphical model that
has so far shown practical impacts in some real-world applications.
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I Boosted trees = (decision trees) × (least-square error) × (gradient
boosting)

See boosted trees in Section 9.3.3.Tree boosting is a popular ensemble learning method that sequen-
tially trains a large number of decision trees based on the famous
gradient-boosting algorithm, where each new base model is esti-
mated along a functional gradient in the model space, and all base
models are eventually combined as an ensemble model for the final
decision. Several tree-boosting methods have achieved excellent per-
formance on a variety of practical machine learning tasks, including
both regression and classification problems. In boosted regression
trees, the least-square error is often used as the objective function in
gradient boosting.

I Deep learning = (neural networks) × (minimum cross-entropy er-
ror) × ( SGD or its variants)

See deep learning in Chapter 8.Deep learning is currently the dominant method for machine learn-
ing, and it has already demonstrated unprecedented impact in many
real-world artificial intelligence (AI) problems. Deep learning relies
on artificial neural networks, whose unknown weights can be esti-
mated by optimizing a special cross-entropy error function. Neural
networks can be flexibly arranged as complex structures, consist-
ing of a variety of basic structures designed for some particular
purposes, such as fully connected multilayer structures for universal
function approximation, convolution structures for weight sharing
and locality modeling, recurrent structures for sequence modeling,
and attention structures for catching long-span dependency. More-
over, by simply expanding their size in depth and width, neural
networks have shown excellent capability in accommodating enor-
mous sets of training data. No matter what network structures are
used, the learning can be done by a very simple SGD-based iterative
method, the so-called error back-propagation. Of course, the success
of learning competitive neural networks also heavily depends on
many engineering tricks, which cannot be fully explained yet. At last,
neural networks are also criticized as black-box approaches because
the learned networks cannot be intuitively understood or interpreted
by humans. Many theoretical problems related to neural networks
remain open, which calls for more serious research efforts in deep
learning.
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This chapter discusses some important issues related to feature extraction
in the pipeline of machine learning. As we have seen, feature extraction of-
ten varies from one task to another because it requires domain knowledge
in order to extract good representations for any particular type of raw
data at hand. The following section briefly introduces some general con-
cepts in feature extraction and then focuses on the domain-independent
methods of dimensionality reduction that play an important role in building
a successful machine learning system. The chapter presents a variety of
dimension-reduction methods, ranging from linear methods to nonlinear
ones, and the key ideas behind them.

4.1 Feature Extraction: Concepts

Generally speaking, feature extraction involves three distinct but related
topics, namely, feature engineering, feature selection, and dimensionality reduc-
tion. The following subsections briefly introduce them one by one.

4.1.1 Feature Engineering

Feature engineering is the process of using domain knowledge to extract
new variables, often called features, from raw data that can facilitate model
building in machine learning problems. For example, we often use a nor-
malized short-time energy distribution over all frequency bands, that is,
the so-called mel-frequency cepstrum (MFC) [49], to represent speech,
music, and other audio signals. We may use the scale-invariant feature
transformation (SIFT) [149] to detect local features to represent images in
computer vision. We often use the so-called bag-of-words features [91] to
represent a text document in natural language processing and information
retrieval. In general, we cannot fully understand these domain-specific
features without learning the characteristics of each data type. The follow-
ing discussion uses the relatively intuitive bag-of-words features as an
example to explain how to extract a feature vector to represent raw data.
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Figure 4.1: An illustration of representing
a text document as a fixed-size bag-of-
words feature vector.

Example 4.1.1 Bag-of-Words Features for Text Documents

Assuming we can ignore the word order and grammar structure, show
how to represent a text document as the bag of its words.

First of all, we have to specify a vocabulary that includes all distinct
words used in all documents in the corpus. For each document, we ignore
internal linguistic structure, such as word order and grammar, and keep
only the counts of how many times each word appears in the document.
As shown in Figure 4.1, any variable-length document can always be
represented with a fixed-size vector of all word counts, denoted as x,
which is normally called the bag-of-words feature. The dimension of the
bag-of-word feature vector x equals to the number of distinct words in the
vocabulary, which can reach hundreds of thousands or even millions for
real text documents. Furthermore, the plain bag-of-words features can be
normalized based on how frequently each word appears across different
documents, leading to the so-called term frequency-inverse document
frequency (tf-idf) feature [117]. The tf-idf feature vector has the same
dimension as the plain bag-of-words feature vector, but it gives more
weight to the more meaningful words. Moreover, some ordinal encoding
schemes, such as fixed-size ordinally-forgetting encoding (FOFE) [264],
can also be used to enhance the plain bag-of-words feature to retain the
word-order information in each text document. �

In feature engineering, after we have extracted various features, we nor-
mally need to use a proper scaling method to normalize the dynamic
range of each independent feature to ensure all dimensions in a feature
vector have zero mean and unit variance. It has been found that this simple
normalization step can significantly facilitate the optimization process in
model learning.

4.1.2 Feature Selection

If the number of different features derived from the previously described
feature-engineering procedure is too high, we usually have to reduce
the dimension of feature vectors to avoid the curse of dimensionality and
alleviate overfitting in order to improve generalization. The premise is that
some of the manually extracted features may be redundant or insignificant,
so we can remove them without incurring much loss of information.

In machine learning, feature selection is the process of selecting a subset
of relevant features for use in model construction and discarding the
others [88]. A feature-selection algorithm aims to produce the best feature
subset using a search technique to propose different feature combinations
and relying on an evaluation measure to score the usefulness of each
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Figure 4.2: An illustration of dimension-
reduction methods that use a map-
ping function f (·) to convert a high-
dimensional feature vector to a lower-
dimensional one.

feature subset. We normally divide all feature-selection strategies into
three categories: wrapper, filter, and embedded methods. In the most
efficient filter methods, we tend to use a fast proxy measure to score each
feature subset. The proxy measure is chosen in such a way that it is fast to
compute while still capturing the usefulness of the features, such as mutual
information (see Example 2.3.3) and Pearson’s correlation coefficient (see
margin note).

For any two random variables x and y,
Pearson’s correlation coefficient is the co-
variance of two variables divided by the
product of their standard deviations:

ρ =
cov(x, y)
σxσy

=
E

[
(x − µx )(y − µy )

]
σxσy

,

where the variables are as follows:
µx : the mean of x,
µy : the mean of y,
σx : the standard deviation of x, and
σy : the standard deviation of y.

4.1.3 Dimensionality Reduction

In contrast to feature selection, we use dimensionality reduction to refer to
another group of techniques that utilize a mapping function to convert a
high-dimensional feature vector to a lower-dimensional one while retain-
ing the distribution information in the original high-dimensional space as
much as possible. Due to the aforementioned "blessing of nonuniformity,"
we know this is always possible for high-dimensional feature vectors
arising from real-world applications.

As shown in Figure 4.2, a function f (·) : Rn → Rm maps any point in an n-
dimensional space to a point in an m-dimensional space, where m � n. We
can use different functional forms for f (·) (e.g., linear functions, piece-wise
linear functions, or other general nonlinear functions). On the other hand,
we also need to choose a learning criterion in terms of what information
is retained during this mapping. Depending on our choices, we can end
up with a variety of different dimension-reduction methods in machine
learning. The following sections introduce some representative methods
from several typical categories.

4.2 Linear Dimension Reduction

y︷︸︸︷
y1
...

ym

 =
a11 · · · a1n

... ai j

...
am1 · · · amn

︸                      ︷︷                      ︸
A


x1
...
xn

︸︷︷︸
x

This section first introduces the simplest dimension-reduction method,
that is, linear dimension reduction, where we are constrained to use a linear
mapping function, as shown in Figure 4.2. As we know, any linear function
from Rn to Rm can be represented by an m × n matrix A as follows:

y = f (x) = A x,

where A ∈ Rm×n denotes all parameters of this linear function that need to
be estimated. The following subsections introduce two popular methods
that estimate the matrix A in a different way.
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Figure 4.3: An illustration of a simple ex-
ample of PCA in a 2D space. Each blue
dot indicates a 2D feature vector, and each
blue circle indicates a projection in a 1D
subspace.

Figure 4.4: An illustration of projecting a
high-dimensional vector x into a straight
line specified by the directional vector w.

4.2.1 Principal Component Analysis

Principal component analysis (PCA) is probably the most popular linear
dimension-reduction technique in machine learning [185, 103]. Let’s first
use a simple example to explain the main idea behind PCA. Assume we
have some feature vectors distributed in a two-dimensional (2D) space,
as shown in Figure 4.3. If we want to use a linear method to reduce
dimensionality, it essentially means that we need to project these 2D
vectors to a straight line in the space. Each straight line is indicated by a
directional vector. Figure 4.3 shows two orthogonal directional vectors,
denoted as w1 and w2. If we project all 2D feature vectors into each of these
two directions, we end up with two different linear methods to project all
feature vectors into one-dimensional (1D) space. The example in Figure
4.3 displays a striking difference between these two projections. When
we project all vectors in the direction of w1, all projections scatter widely
along the line of w1. In other words, the projections have a larger variance
in the 1D space along the line of w1. On the other hand, if we project
all 2D vectors into the direction of w2, all projections heavily congregate
within a small interval. This indicates that they have a smaller variance
along the line of w2. An interesting question is which projection is better
in terms of retaining the distribution information of all original 2D vectors.
The answer is the projection that achieves a larger variance. When we
project vectors from a 2D space into a 1D space, basically, we will have to
lose some information about the original data distribution. However, the
projection achieving a larger variance tends to maintain more variations
than the one yielding a smaller variance. If the projections have a smaller
variance, it means that these projections can be better represented by a
single point in the space, namely, the mean of these projections. This tells
us that it retains less information on the data distribution.

PCA aims to search for some orthogonal projection directions in the space
that can achieve the maximum variance. These directions are often called
the principal components of the original data distribution. PCA uses these
principal components as the basis vectors to construct a linear subspace
for dimensionality reduction. In the following, we will first look at how to
find a principal component that maximizes the projection variance.

As shown in Figure 4.4, assume we want to project a vector in an n-
dimensional space x ∈ Rn into 1D space, that is, a line indicated by a
directional vector w. We further assume the directional vector w is of unit
length:

‖w‖2 = wᵀw = 1. (4.1)

If we project x into the line of w, its coordinate in the line, denoted as v,
can be computed by the inner product of these two vectors (see margin
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note):
v = x ·w = wᵀx (4.2)

If we use θ to denote the angle between x
and w in Figure 4.4, we have

v = ‖x‖ cos θ.

According to the definition of the inner
product in a Euclidean space, we have

cos θ =
x ·w
‖x‖ ‖w‖

.

Therefore, we have

v =
x ·w
‖w‖

= x ·w

because ‖w‖ = 1.

Assume we are given a set of N vectors in the n-dimensional space:

D =
{
x1, x2, · · · , xN

}
.

Let us investigate how to find the direction that achieves the maximum
projection variance for all vectors in D. If we project all vectors in D into a
line of w, according to Eq. (4.2), we have their coordinates in the line as
follows: {

v1, v2, · · · , vN
}
,

where vi = wᵀxi for all i = 1, 2, · · · , N . We can compute the variance of
these projection coordinates as

σ2 =
1
N

N∑
i=1

(vi − v̄)
2,

where v̄ = 1
N

∑N
i=1 vi denotes the mean of these projection coordinates. We

can verify that (see margin note)
v̄ =

1
N

N∑
i=1

vi =
1
N

N∑
i=1

wᵀxi

= wᵀ
[

1
N

N∑
i=1

xi

]
= wᵀ x̄.v̄ = wᵀx̄,

with x̄ = 1
N

∑N
i=1 xi indicating the mean of all vectors in D.

We can further compute the variance as follows:

Note that
wᵀx = xᵀw

holds for any two n-dimensional vectors
w and x.

σ2 =
1
N

N∑
i=1

(vi − v̄)(vi − v̄)

=
1
N

N∑
i=1

(wᵀxi −wᵀx̄)(wᵀxi −wᵀx̄)

=
1
N

N∑
i=1

wᵀ(xi − x̄)wᵀ(xi − x̄)

=
1
N

N∑
i=1

wᵀ(xi − x̄) (xi − x̄)ᵀw

= wᵀ
[

1
N

N∑
i=1

(xi − x̄) (xi − x̄)ᵀ︸                         ︷︷                         ︸
S

]
w,

where the matrix S ∈ Rn×n is the sample covariance matrix of the data set
D. The principal component can be derived by maximizing the variance
as follows:

S =
1
N

N∑
i=1

(xi − x̄) (xi − x̄)ᵀ. (4.3)

ŵ = arg max
w

wᵀS w,
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Figure 4.5: An illustration of the distri-
bution of all n eigenvalues of a sample
covariance matrix.

subject to
wᵀw = 1.

We further introduce a Lagrange multiplier λ for the previous equality
constraint and derive the Lagrangian of w as

L(w) = wᵀS w + λ ·
(
1 −wᵀw

)
.

We can compute the partial derivative with respect to w as

Note that we have

∂

∂x

(
xᵀx

)
= 2x

∂

∂x

(
xᵀAx

)
= 2Ax (symmetric A). ∂L(w)

∂w
= 2Sw − 2λw.

After vanishing the gradient ∂L(w)
∂w = 0, we can derive that the principal

component ŵ must satisfy the following condition:

S ŵ = λ ŵ.

In other words, the principal component ŵ must be an eigenvector of the
sample covariance matrix S while the Lagrange multiplier λ equals to
the corresponding eigenvalue. In an n-dimensional space, we can have at
most n such eigenvectors that are all orthogonal. When we substitute any
of these eigenvectors into the previous objective function, we can derive
that the projection variance equals to the corresponding eigenvalue, as
follows:

σ2 = ŵᵀSŵ = ŵᵀλ ŵ = λ · ‖ŵ‖2 = λ.

This result suggests that if we want to maximize the projection variance,
we just use the eigenvector corresponding to the largest eigenvalue.

We can further extend this result to the case where we want to map a
vector x ∈ Rn into a lower-dimensional space Rm (m � n) (see Exercise
Q4.1). In this case, we should use the m eigenvectors corresponding to the
top m largest eigenvalues of S, denoted as

{
ŵ1, ŵ2, · · · , ŵm

}
, to construct

the matrix A in the mapping function y = Ax:

A =


— ŵᵀ1 —
— ŵᵀ2 —

...
— ŵᵀm —

m×n
,

where each eigenvector forms a row of A.

When we have a sufficient amount of training samples (i.e., N ≥ n), the
sample covariance matrix S is symmetric and has full rank. Therefore,
we can compute n different mutually orthogonal eigenvectors for S corre-
sponding to n nonzero eigenvalues. As shown in Figure 4.5, when we plot
all eigenvalues of a typical sample covariance matrix S from the largest to
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the smallest, we can see that the first few components normally dominate
the total variance. As a result, we can always use a small number of top
eigenvectors to construct a PCA matrix that can retain a significant por-
tion of the total variance in the original data distribution. After the PCA
mapping, y serves as a compact representation in a lower-dimensional
linear subspace for the original high-dimensional vector x.

Here, we can summarize the whole PCA procedure as follows:

PCA Procedure

Assume the training data are given as D = {x1, x2, · · · , xN }.

1. Compute the sample covariance matrix S in Eq. (4.3).
2. Calculate the top m eigenvectors of S.
3. Form A ∈ Rm×n with an eigenvector in a row.
4. For any x ∈ Rn, map it to y ∈ Rm as y = Ax.

At last, let us consider how to reconstruct the original x from its PCA rep-
resentation y. First of all, let’s assume that we maintain all eigenvectors in
the PCA matrix A; in this case, we have m = n, A is an n× n orthogonal ma-
trix, and the PCA mapping corresponds to a rotation in the n-dimensional
space. As a result, we can perfectly reconstruct x from y as follows:

When m = n, A is an orthogonal matrix;
thus, we have

AᵀA = I.

However, when m < n, A is an m × n

matrix, and AᵀA is still an n × n matrix,
but we can verify that

AᵀA , I.

x̃ = Aᵀy = AᵀA︸︷︷︸
I

x = x.

However, in a regular PCA procedure, we normally do not keep all eigen-
vectors in A in order to reduce dimensionality. In this case, A is an m × n
matrix. For simplicity, we still can use the same formula

Refer to Exercise Q4.3 for a better way to
reconstruct x from y:

x̃ = Aᵀy +
(
I −AᵀA

)
x̄

x̃ = Aᵀy

to reconstruct an n-dimensional vector from an m-dimensional PCA repre-
sentation y. However, we can see that x̃ , x in this case (see margin note).
In other words, we cannot perfectly recover the original high-dimensional
vector because of the truncated eigenvectors. As shown in Figure 4.6,

Figure 4.6: An illustration of recon-
structed images (n = 784) from some
lower-dimensional PCA projections (m =
2, 50, 100, 300). (Courtesy of Huy Vu.)

where the original image of a handwritten digit is 28 × 28 = 784 in size,
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Figure 4.7: An illustration of the
minimum-distortion-error formulation
for PCA.

Figure 4.8: A comparison of PCA versus
linear discriminant analysis (LDA) in a
simple two-class example, where color
indicates the class label of each feature
vector.

we have shown some reconstructed images from its lower-dimensional
PCA projections (m = 2, 50, 100, 300). When m is small, we can restore only
the main shape of the digit, having lost many fine details of the original
image.

There exists a different formulation to derive the PCA method by min-
imizing the total distortion when we project high-dimensional vectors
into a low-dimensional space. As shown in Figure 4.7, when we project a
high-dimensional vector xi into a straight line indicated by the directional
vector w, we essentially introduce a distortion error indicated by ei . We
can formulate PCA by searching for the best projection direction w to
ensure the total introduced error is minimized over the training set. This
formulation leads to the same result as we have discussed before. Please
refer to Exercises Q4.2 and Q4.3 for more details on this formulation.

4.2.2 Linear Discriminant Analysis

As we know, PCA aims to project high-dimensional data along the princi-
pal components to maximize the variance. In some cases, when we know
the data come from several different classes, we may want to project the
data into a lower-dimensional space in such a way that the separation
between different classes is maximized. Generally speaking, PCA cannot
achieve this goal. For example, assume some feature vectors from two
different classes (labeled by color) are distributed as shown in Figure 4.8. If
we use the PCA method, the data will be projected to the line PCA, where
the variance of all vectors is maximized. As we can see, the variance is
maximized along this direction, but two classes are mapped to the same
region, and they become highly overlapped after this dimension reduc-
tion. From the perspective of maintaining class separation, this projection
direction is not ideal. On the other hand, if we project the data along the
line LDA, the separation between two classes can be well maintained in
the low-dimensional space.

This section introduces a general method to derive a projection direction
that can achieve the maximum separation between different classes. As-
sume all high-dimensional vectors come from K different classes. Based
on the given class labels, we first partition all vectors into K subsets, de-
noted as C1, C2, · · · , CK . Then, we compute the mean vector and sample
covariance matrix for each subset, as follows:

|Ck | denotes the number of vectors in the
subset Ck . µk =

1
|Ck |

∑
xi ∈Ck

xi

Sk =
1
|Ck |

∑
xi ∈Ck

(
xi − µk

) (
xi − µk

)ᵀ,
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Figure 4.9: An illustration of projecting
some images of handwritten digits (i.e.,
4, 7, and 8) into 2D space using PCA and
LDA. (courtesy of Huy Vu.)

for all k = 1, 2, · · · , K .

If we still adopt a linear projection method as done previously, we will
project all vectors into a line of directional vector w. If we want to achieve
the maximum class separation between different classes, conceptually
speaking, all projections from the same class should stay close, whereas
different classes should be mapped into some far-apart regions. To ac-
commodate these two goals at the same time, Fisher’s linear discriminant
analysis (LDA) [64] aims to derive a projection direction w by maximizing
the following ratio:

max
w

wᵀSbw
wᵀSww︸    ︷︷    ︸

J(w)

.

The numerator is used to measure the separation between different classes
with the so-called between-class scatter matrix Sb ∈ Rn×n, which is computed
by the mean vectors of all classes as follows:

Sb =

K∑
k=1

��Ck

�� (µk − µ) (µk − µ)ᵀ,
where µ denotes the mean vector of all vectors from all different classes.

Meanwhile, the denominator is used to measure the closeness of all pro-
jections from the same class with the so-called within-class scatter matrix
Sw ∈ Rn×n, which is defined as the sum of all individual sample covariance
matrices:

Sw =

K∑
k=1

Sk .

Assume w1 is a solution to maximize the
ratio J(w), but wᵀ1 Sww1 , 1. We can al-
ways scale w1 as

w2 = αw1

to make wᵀ2 Sww2 = 1. This scaling does
not change the value of J(w) because the
scaling factor α cancels out from the nu-
merator and denominator. Therefore, the
constraint

wᵀSww = 1

does not affect the optimization problem
because the scaled w2 is as good as w1.Furthermore, we can verify that maximizing the ratio J(w) is equivalent

to the following constrained optimization problem (see margin note):

w∗ = arg max
w

wᵀSbw,

subject to
wᵀSww = 1.

Using the same method of Lagrange multipliers, we can derive that the
solution to the LDA problem must be an eigenvector of the matrix S−1

w Sb

(see Exercise Q4.4). Therefore, LDA is very similar to the PCA procedure,
except we compute the eigenvectors from another n × n matrix S−1

w Sb .

As an example, Figure 4.9 compares LDA with PCA by plotting their pro-
jections in a 2D space for some 28 × 28 images of three handwritten digits
of 4, 7, and 8. As we can see, the LDA projection can achieve much better
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class separation than PCA because LDA can leverage the information
about class labels.

Finally, LDA can be viewed as a supervised learning method for dimension
reduction because it requires class labels, whereas PCA is an unsupervised
learning method because it can derive the principal components from
unlabeled data. Another major difference between them is that LDA can
only find at most K −1 projection directions. The reason is that the between-
class scatter matrix Sb does not have full rank. It is derived from only
K different class-dependent mean vectors, and we can verify that its
rank cannot exceed K − 1. As a result, the rank of the matrix S−1

w Sb does
not exceed K − 1 as well, and thus in LDA, we can only derive at most
K − 1 mutually orthogonal eigenvectors corresponding to K − 1 nonzero
eigenvalues.

K is the number of different classes in
data.

4.3 Nonlinear Dimension Reduction (I):
Manifold Learning

The linear methods for dimension reduction are often intuitive in concept
and simple in computation. For example, both PCA and LDA can be
solved with a closed-form solution. However, linear methods make sense
only when the low-dimensional structure in the data distribution can be
well captured by some linear subspaces. For example, in Figure 4.10, we
can see the data are distributed in a 1D nonlinear structure, but we cannot
use any straight line to represent it precisely. We have to use a nonlinear
dimension-reduction method to capture this structure. In mathematics,
such nonlinear structures in a lower-dimensional topological space are
often called manifolds.

Figure 4.10: An illustration of nonlin-
ear dimension-reduction methods for the
case where high-dimensional vectors are
distributed in a lower-dimensional non-
linear topological space.

In this section, we will introduce some representative nonlinear meth-
ods from the literature of manifold learning. These methods try to identify
the underlying low-dimensional manifold using some nonparametric
approaches, where we do not assume the functional form for the non-
linear mapping function f (·) but directly estimate the coordinates y in
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Figure 4.11: An illustration of the lo-
cal linear structure of LLE in the high-
dimensional space.

Figure 4.12: An illustration of the lo-
cal linear structure of LLE in the low-
dimensional space.

the low-dimensional space for all high-dimensional vectors. The next
section introduces a parametric approach that uses neural networks to
approximate the underlying nonlinear mapping function.

4.3.1 Locally Linear Embedding

Locally linear embedding (LLE) [201] aims to capture the underlying man-
ifold with a piece-wise linear method. Within any small neighborhood
in the manifold, we assume the data can be locally modeled by a linear
function. As shown in Figure 4.11, any vector xi in the high-dimensional
space can be linearly reconstructed from some nearby vectors within a
sufficiently small neighborhood, denoted as Ni , as follows:

xi ≈
∑
j∈Ni

wi jxj ,

where wi j denotes a linear contribution weight when we reconstruct xi
using xj . The weights are nonzero only for the nearby vectors within the
neighborhood Ni . In LLE, a convenient way to specify the neighborhood
Ni is to use k nearest neighbors of xi . We further assume the total con-
tribution from all nearby vectors in each neighborhood is constant (i.e.,∑

j wi j = 1). All pair-wise weights can be derived by minimizing the total
reconstruction error over all xi :{

ŵi j

}
= arg min

{wi j }

∑
i

xi −
∑
j∈Ni

wi jxj

2,

subject to
∑

j wi j = 1 (∀i).

Furthermore, when we map all high-dimensional vectors to a low-dimensional
space, we try to maintain the locally linear structure in the high-dimensional
space. In other words, we assume all pair-wise linear weights

{
ŵi j

}
ob-

tained in the high-dimensional space can be directly applied to the low-
dimensional space to locally associate their projections in the same linear
way, as shown in Figure 4.12. Based on this assumption, we can derive
all low-dimensional projections by minimizing the reconstruction error in
the low-dimensional space:{

ŷi

}
= arg min

{yi }

∑
i

yi −
∑
j∈Ni

ŵi jyj

2.

Interestingly enough, both optimization problems can be solved with a
closed-form solution (see Exercise Q4.5). This makes LLE one of the most
efficient nonlinear methods for dimension reduction.
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Figure 4.13: An illustration of using a
weighted graph to compute the distance
for far-apart vectors in Isomap. The dis-
tance between A and B is computed by
the shortest path (solid red lines) in the
graph rather than the direct distance in
the space (dashed red line).

4.3.2 Multidimensional Scaling

The key idea behind the so-called multidimensional scaling (MDS) [163]
is to preserve all pair-wise distances when we project high-dimensional
vectors into a low-dimensional space. If two vectors are nearby in the
high-dimensional space, their projections should be close in the low-
dimensional space as well, and vice versa.

In MDS, we first use a metric to compute the pair-wise distances of all
high-dimensional vectors, for example, computing the Euclidean distance
di j = ‖xi − xj ‖ for all i and j.

Next, we derive the coordinates of all projections in a low-dimensional
space by minimizing the total difference between the corresponding pair-
wise distances: {

ŷi

}
= arg min

{yi }

∑
i

∑
j>i

(
‖yi − yj ‖ − di j

)2
.

A major issue in this optimization is that it focuses on matching far-apart
vectors because a long distance contributes much more in this objective
function than a short distance. A simple fix is to use Sammon mapping
[211] to normalize the distance difference to weigh more on the nearby
pairs: {

ŷi

}
= arg min

{yi }

∑
i

∑
j>i

(
‖yi − yj ‖ − di j

di j

)2

.

There is no easy way to solve these optimization problems in MDS. We
will have to rely on numerical optimization methods, such as the gradient
descent method. As a result, the computational complexity of MDS is
fairly high.

Another interesting idea to further improve MDS is the so-called isometric
feature mapping (Isomap) method [235], where we only compute pair-
wise distances for nearby vectors in the high-dimensional space. These
nearby vectors are further connected to form a sparse graph in the high-
dimensional space, as shown in Figure 4.13. Each edge in the graph is
weighted by the corresponding pair-wise distance. For any pair of far-
apart vectors (e.g., A and B), their distance is computed by the shortest
path in the weighted graph (solid red lines) rather than the direct distance
between them in the space (dashed red line). By doing this, Isomap can
significantly improve the capability of capturing local structures in the
data distribution. We also note that Isomap is even more costly to run than
the regular MDS because it is very expensive to traverse a large graph to
compute the shortest paths.
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4.3.3 Stochastic Neighborhood Embedding

Stochastic neighborhood embedding (SNE) [98] is a probabilistic local mapping
method that relies on some pair-wise conditional probabilities computed
from local distances. First of all, for any two high-dimensional vectors, xi
and xj (i , j), we define a conditional probability using a Gaussian kernel
as follows: The function

Φ(xi , x j ) = exp
(
−γ ‖xi − x j ‖

2)
is called a Gaussian kernel because it re-
sembles the Gaussian distribution.

pi j =
exp

(
− γi ‖xi − xj ‖

2)∑
k exp

(
− γi ‖xi − xk ‖2

) (∀i, j i , j),

where γi is a control parameter that needs to be manually specified. In-
tuitively speaking, we can view pi j as the probability of picking xj as a
neighbor of xi . Because of the sum-to-1 constraint

∑
j pi j = 1, we know

that Pi =
{
pi j | ∀ j

}
forms a multinomial distribution.

Similarly, we can define pair-wise conditional probabilities based on the
projections in a low-dimensional space as follows:

qi j =
exp

(
− ‖yi − yj ‖

2)∑
k exp

(
− ‖yi − yk ‖

2
) (∀i, j).

Here, Qi =
{
qi j | ∀ j

}
also forms a multinomial distribution. The key idea

behind SNE is to derive all low-dimensional projections by minimizing
the Kullback–Leibler (KL) divergence between these multinomial distribu-
tions: {

ŷi

}
= arg min

{yi }

∑
i

KL
(
Pi | |Qi

)
= arg min

{yi }

∑
i

∑
j

pi j ln
pi j
qi j

.

Once again, we have to rely on iterative numerical methods to solve this
optimization problem.

Refer to Section 2.3.3 for KL divergence.

The t-distributed stochastic neighbor embedding (t-SNE) method [150] is an
extension of SNE. Instead of using the sharp Gaussian kernel, t-SNE uses
a heavy-tailed Student’s t-distribution with 1 degree of freedom to define
the conditional probabilities in a low-dimensional space:

qi j =

(
1 + ‖yi − yj ‖

2)−1∑
k,i

(
1 + ‖yi − yk ‖

2
)−1 (∀i, j).

When we use t-SNE to project high-dimensional data into a low-dimensional
space of two or three dimensions, it has been found that t-SNE is partic-
ularly good at displaying clusters. As a result, t-SNE is a very popular
tool for data visualization. For example, when we use t-SNE to plot the
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Figure 4.14: An illustration of using t-
SNE to project some images of the hand-
written digits 4, 7, and 8 into 2D space.
(courtesy of Huy Vu.)

images of three handwritten digits (i.e., 4, 7, and 8) in Figure 4.14, it shows
a better clustering effect than the two linear methods in Figure 4.9.

4.4 Nonlinear Dimension Reduction (II): Neural
Networks

This section briefly introduces another group of nonlinear dimension-
reduction methods that use neural networks to approximate the general
nonlinear mapping function f (·) in Figure 4.2. As opposed to the nonpara-
metric manifold learning approaches discussed in the previous section,
these methods can be considered as parametric approaches for nonlin-
ear dimension reduction because the nonlinear mapping function can
be determined by the underlying neural network, which in turn is fully
specified by a fixed set of parameters (i.e., all connection weights in the
network). Neural networks are not fully covered until Chapter 8. This
section describes the basic ideas of using neural networks for nonlinear di-
mension reduction. Readers need to refer to Chapter 8 for implementation
details in terms of how to configure network structure and how to learn
parameters.

Figure 4.15: An illustration of an autoen-
coder that uses neural networks as an
encoder and a decoder to learn how to
project high-dimensional vectors x into a
low-dimensional space y.

4.4.1 Autoencoder

As shown in Figure 4.15, an autoencoder [132] relies on two neural networks:
one as an encoder and the other as a decoder. The encoder network serves
as the nonlinear mapping function y = f (x) in Figure 4.2, mapping high-
dimensional vectors x into a low-dimensional space y. On the other hand,
the decoder network aims to learn an inverse transformation to recover
the original high-dimensional vector from its low-dimensional representa-
tion: x̂ = g(y). Both encoder and decoder networks are jointly trained by
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minimizing the difference between the input and output (i.e., ‖x̂ − x‖2). In
this way, an autoencoder can be learned from unlabeled data so that it is
an unsupervised learning method for nonlinear dimension reduction. Due
to this, an autoencoder can be viewed as a nonlinear extension of PCA
[11].

4.4.2 Bottleneck Features

Figure 4.16: An illustration of using a bot-
tleneck layer in a deep neural network
to learn how to project high-dimensional
vectors x into a low-dimensional space y.

If we have access to class labels of data, we can build a deep neural
network to map high-dimensional vectors x into their corresponding class
labels. As shown in Figure 4.16, we can deliberately insert a narrow layer
in the middle of the deep network, which is often called a bottleneck layer.
After the entire deep network is trained using labeled data, we can use
the first part of the network (prior to the bottleneck layer) as a nonlinear
mapping function to transform any high-dimensional vector into a low-
dimensional representation: y = f (x), where y is often called the bottleneck
(BN) feature. Similar to LDA, we need to use class labels to learn the BN
feature extractor. Hence, we can view BN features as a nonlinear extension
of LDA. The BN features have been successfully used to learn compact
representations for speech signals in speech recognition [94, 86].
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Lab Project I

In this project, you will implement several feature-extraction methods. You may choose to use any programming
language for your own convenience. You are only allowed to use libraries for linear algebra operations, such
as matrix multiplication, matrix inversion, matrix factorization, and so forth. You are not allowed to use any
existing machine learning or statistics toolkits or libraries or any open-source codes for this project.

In this project, you will use the MNIST data set [142], which is a handwritten digit set containing 60,000 training
images and 10,000 test images. Each image is 28 by 28 in size. The MNIST data set can be downloaded from
http://yann.lecun.com/exdb/mnist/. In this project, for simplicity, you just use pixels as raw features for the
following methods:

a. Use all training images of three digits (4, 7, and 8) to estimate the PCA projection matrices, and then plot
the total distortion error in Eq. (4.5) of these images as a function of the used PCA dimensions (e.g., 2,
10, 50, 100, 200, 300). Also, plot all eigenvalues of the sample covariance matrix from the largest to the
smallest. At least how many dimensions will you have to use in PCA in order to keep 98 percent of the
total variance in data?

b. Use all training images of three digits (4, 7, and 8) to estimate LDA projection matrices for all possible
LDA dimensions. What are the maximum LDA dimensions you can use in this case? Why?

c. Use PCA and LDA to project all images into 2D space, and plot each digit in a different color for data
visualization. Compare these two linear methods with a popular nonlinear method, namely, t-SNE
(https://lvdmaaten.github.io/tsne/). You do not need to implement t-SNE and can directly download
the t-SNE code from the website and run it on your data to compare with PCA and LDA. Based on your
results, explain how these three methods differ in data visualization.

d. If you have enough computing resources, repeat the previous steps using the training images of all 10
digits in MNIST.

http://yann.lecun.com/exdb/mnist/
https://lvdmaaten.github.io/tsne/
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Exercises

Q4.1 Use proof by induction to show that the m-dimensional PCA corresponds to the linear projection defined
by the m eigenvectors of the sample covariance matrix S corresponding to the m largest eigenvalues. Use
Lagrange multipliers to enforce the orthogonality constraints.

Q4.2 Deriving the PCA under the minimum error formulation (I): Formulate each distance ei in Figure 4.7, and
search for w to minimize the total error

∑
i e2

i .

Q4.3 Deriving the PCA under the minimum error formulation (II): Given a set of N vectors in an n-dimensional
space: D =

{
x1, x2, · · · , xN

}
(xi ∈ Rn), we search for a complete orthonormal set of basis vectors

{
wj ∈

Rn | j = 1, 2, · · · , n
}
, satisfying wᵀj wj′ =

{
1 j = j ′

0 j , j ′
. We know that each data point xi in D can be

represented by this set of basis vectors as xi =
∑n

j=1 (w
ᵀ
j xi)wj . Our goal is to approximate xi using a

representation involving only m < n dimensions as follows:

x̃i =
m∑
j=1

(wᵀj xi)wj +

residual︷        ︸︸        ︷
n∑

j=m+1

bjwj , (4.4)

where {bj | j = m + 1, · · · , n} in the residual represents the common biases for all data points in D. If we
minimize the total distortion error

E =
N∑
i=1

‖xi − x̃i ‖2 (4.5)

with respect to both
{
w1, w2, · · · , wm

}
and {bj }:

a. Show that the m optimal basis vectors
{
wj

}
lead to the same matrix A in PCA.

b. Show that using the optimal biases {bj } in Eq. (4.4) leads to a new reconstruction formula converting
the m-dimensional PCA projection y = Ax to the original x, as follows:

x̃ = Aᵀy +
(
I −AᵀA

)
x̄,

where x̄ = 1
N

∑N
i=1 xi denotes the mean of all training samples in D.

Q4.4 Use the method of Lagrange multipliers to derive the LDA solution.

Q4.5 Derive the closed-form solutions for two error-minimization problems in LLE.
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Before introducing any particular discriminative model in detail, this
chapter first presents a general framework to formally describe all discrim-
inative models. Next, some important concepts and results in statistical
learning theory are introduced, which can be used to answer some fun-
damental questions related to machine learning (ML) approaches using
discriminative models.

5.1 Formulation of Discriminative Models

Any ML model can be viewed as a system (see margin note) that takes
feature vectors x as input and generates target labels y as output.

ML model
x yWe

further assume input vectors x are n-dimensional vectors from an input
space, denoted as X; thus, we have x ∈ X. Some examples for X are as
follows: (i) Rn for unconstrained continuous inputs; (ii) a hypercube [0, 1]n

for constrained continuous inputs; (iii) and X, which may be a finite or
countable set for discrete inputs. Without losing generality, we assume
outputs y are scalar, coming from an output space, denoted as Y. Depending
on whether the output y is continuous or discrete, the ML problem is called
a regression or classification problem.

For all discriminative models, we always assume the inputs x are random
variables, drawn from an unknown probability distribution p(x) (i.e., x ∼
p(x)). However, for each input x, the corresponding output y is generated
by an unknown deterministic function (i.e., y = f̄ (x)), which is normally
called the target function.

Refer to Section 10.1 for generative mod-
els. Compare the basic assumptions with
those of discriminative models.

When using any discriminative models in ML,

5 Statistical Learning Theory
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our goal is to learn the target function from a prespecified function family,
called model space H (a.k.a., hypothesis space), based on a training set
consisting of a finite number of sample pairs:

DN =
{
(xi , yi)

�� i = 1, · · · , N
}
,

where xi is an independent sample drawn from the distribution p(x) (i.e.,
xi ∼ p(x)), and yi = f̄ (xi) for all i = 1, 2, · · · , N . The model space H could
be any valid function space, such as all linear functions, all quadratic
functions, all polynomial functions, or all Lp functions.

See page 151 for the definition of Lp func-
tions.

Because the target function is unknown, what we can do in ML is to find
the best estimate of the target function inside H. To do so, we also need
to introduce a loss function l(y, y′) to specify the way we count errors in
ML. For pattern-classification problems, it makes sense to count the total
number of misclassification errors for any data set: one error is counted
when the model predicts a class that differs from the true label, and zero
error is counted otherwise. In this case, we normally adopt the so-called
zero–one loss function, as follows:

l(y, y′) =
{

0 (y = y′)

1 (y , y′).
(5.1)

On the other hand, for regression problems, it makes sense to use the
so-called square-error loss function to count prediction deviations:

l(y, y′) = (y − y′)2. (5.2)

Based on the selected loss function l(y, y′), for any model candidate f ∈ H,
we can compute the average loss between f and the target function f̄ in
two different ways. The first one is computed based on all samples in the
training set DN , usually called the empirical loss (a.k.a., empirical risk or
in-sample error):

Remp( f |DN ) =
1
N

N∑
i=1

l
(
yi , f (xi)

)
, (5.3)

where we know yi = f̄ (xi) for all i. The second one is computed for all
possible samples in the entire input space, that is, the so-called expected
risk:

R( f ) = Ex∼p(x)

[
l
(
f̄ (x), f (x)

) ]
=

∫
x∈X

l
(
f̄ (x), f (x)

)
p(x) dx. (5.4)

It is easy to see that R( f ) , Remp( f |DN ). The expected risk R( f ) repre-
sents the true expectation of the loss function over the entire input space,
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whereas Remp( f |DN ) represents the sample mean of the loss function on
the training set. If we sample xi ∼ p(x) and generate yi = f̄ (xi) for all i,
then based on the law of large numbers, we have

lim
N→∞

Remp( f |DN ) = R( f ). (5.5)

5.2 Learnability

The ultimate goal of ML is to learn effective models based on a finite
training set that perform well not only with the same training data but
also with any new unseen samples that are statistically similar to the
training data (i.e., for any x ∼ p(x)). Ideally, we should seek for a model
f (·) inside H that yields the lowest possible expected loss R( f ). However,
this is not a feasible task because R( f ) is not computable in practice. Note
that R( f ) in Eq. (5.4) involves two unknown things, namely, the target
function f̄ (·) and the true data distribution p(x).

Without an alternative, for any ML problem, we will have to seek a
model f inside H that yields a low empirical loss Remp( f |DN ) because
Remp( f |DN ) can be computed solely based on a training set DN . For ex-
ample, we can seek a model inside H that yields the lowest empirical loss
Remp( f |DN ):

f ∗ = arg min
f ∈H

Remp( f |DN ). (5.6)

Generally speaking, this empirical risk minimization (ERM) could be
easily achieved. For example, we can take a simple database approach, as
follows in Example 5.2.1.

Example 5.2.1 Naive Memorization Using an Unbounded Database

We first store all training samples (xi , yi) in DN in a large database. We
treat the database as our learned model. For any new sample x, we
query the database: if an exact match (xi , yi) is found when xi = x, we
return the corresponding yi as output; otherwise, we return unknown or
a random guess as output. �

The memorization approach in Example 5.2.1 gives the lowest possible
Remp( f |DN ) = 0 for any DN as long as the database is large enough to
hold all training samples. However, we do not consider this approach a
good ML method because it learns nothing beyond the given samples.

Example 5.2.1 suggests that ERM alone is not sufficient to guarantee mean-
ingful learning. When we minimize or reduce the empirical risk, if we can
ensure the expected risk is also minimized or at least significantly reduced,
then we say the problem is learnable. Otherwise, if the expected risk always
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remains unchanged or even becomes worse when the empirical risk is
reduced, we say this problem is not learnable. Evidently, the learnability
depends on the gap ��R( f ∗) − Remp( f ∗ |DN )

��, (5.7)

where f ∗ denotes the model found in the ERM procedure.

5.3 Generalization Bounds

Hoeffding’s inequality:
Assuming {x1, x2, · · · , xN } are N inde-
pendent and identically distributed (i.i.d.)
samples of a random variable X whose
distribution function is given as p(x), and
a ≤ xi ≤ b for all i = 1, 2, · · · , N . ∀ε > 0,
we have

Pr
[ ���E[

X
]
−

1
N

N∑
i=1

xi

��� > ε ]
≤ 2e−

2N ε2

(b−a)2 . (5.8)

For any fixed model from the model space (i.e., f ∈ H), the gap��R( f ) − Remp( f |DN )
��

can be computed based on Hoeffding’s inequality in Eq. (5.8). Assuming
we adopt the zero–one loss function in Eq. (5.1) for pattern classification,
the quantity l

(
f̄ (x), f (x)

)
can be viewed as a binary random variable, tak-

ing a value of 0 or 1 for any x. After replacing X with l
(
f̄ (x), f (x)

)
and p(x)

with the data distribution p(x) in Eq. (5.8), we can derive that

Pr

[���R( f ) − Remp( f |DN )

��� > ε

]
≤ 2e−2Nε2

. (5.9)

Note that 0 ≤ l
(
f̄ (x), f (x)

)
≤ 1 holds for any x because we use the zero–one

loss function.

However, Eq. (5.9) holds for a fixed model in H, but it does not apply to
f ∗ derived from ERM because f ∗ depends on DN . For a different training
set of the same size N , ERM may end up with a different model in H even
when the same optimization algorithm is run for ERM. In order to derive
the bound for any one model in H, we will have to consider the following
uniform deviation:

B(N , H) = sup
f ∈H

��R( f ) − Remp( f |DN )
��, (5.10)

because we have
��R( f ∗) − Remp( f ∗ |DN )

�� ≤ B(N , H) as long as f ∗ ∈ H. We
can see that B(N , H) depends on the chosen model space H. Next, we will
consider how to derive B(N , H) for two different types of H.

5.3.1 Finite Model Space: |H|

Assume model space H consists of a finite number of distinct models,
denoted as H =

{
f1, f2, · · · , f |H |

}
, where |H| denotes the number of all

distinct models in H. According to the definition of B(N , H) in Eq. (5.10),
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∀ε > 0, if B(N , H) > ε holds, it means that there exists at least one model
fi in H that must satisfy��R( fi) − Remp( fi |DN )

�� > ε .

In other words, if B(N , H) > ε holds, it is equivalent to say that��R( f1) − Remp( f1 |DN )
�� > ε or

��R( f2) − Remp( f2 |DN )
�� > ε or · · ·

· · · or
��R( f |H |) − Remp( f |H | |DN )

�� > ε .

Because we know that the bound in Eq. (5.9) holds for every fi in H, based
on the union bound in Eq. (5.11), we can immediately derive

Union bound:
For a countable set of events

A1, A2, · · · ,

we have

Pr
(⋃

i

Ai

)
≤

∑
i

Pr(Ai ). (5.11)

Pr
(
B(N , H) > ε

)
≤ 2|H|e−2Nε2

. (5.12)

Equivalently, we can rearrange this as

For any ε , we have

Pr
(
B(N , H) ≤ ε

)
+

Pr
(
B(N , H) > ε

)
= 1.

Pr
(
B(N , H) ≤ ε

)
≥ 1 − 2|H|e−2Nε2

,

which means that B(N , H) ≤ ε holds at least in probability 1−2|H|e−2Nε2 .

If we denote δ = 2|H|e−2Nε2 , which leads to ε =
√

ln |H |+ln 2
δ

2N , then we can
say the same thing in a different way, as follows:

B(N , H) ≤

√
ln |H| + ln 2

δ

2N

holds at least in probability 1 − δ (∀δ ∈ (0, 1]).

Due to the fact that f ∗ ∈ H, we have
��R( f ∗) − Remp( f ∗ |DN )

�� ≤ B(N , H).
Based on the bound for B(N , H), we can conclude the upper bound for
R( f ∗) as follows:

R( f ∗) ≤ Remp( f ∗ |DN ) +

√
ln |H| + ln 2

δ

2N
(5.13)

holds at least in probability 1− δ. This is our first generalization bound for
a finite model space. If we perform ERM over a finite model space based
on a training set of N samples, the gap between the expected risk and the

minimized empirical risk is at most of order O(
√

ln |H |
N ). When we choose a

large model space, the achieved empirical risk Remp( f ∗ |DN )may be lower,
but the gap may also increase. On the other hand, if we choose a small
model space, the achieved empirical risk Remp( f ∗ |DN )may be higher, but
the gap is guaranteed to be tighter.
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Figure 5.1: All training samples are plot-
ted as dots in space. All models within
each shaded area separate these samples
in the same way.

Figure 5.2: A set of three data points is
shattered by H, consisting of all 2D linear
models.

5.3.2 Infinite Model Space: VC Dimension

If model space H is continuous, consisting of an infinite number of distinct
models, the previously described generalization bound does not hold
because the union bound cannot be directly applied as in Eq. (5.12). The
basic intuition is as follows: if all training samples are given, not every
model in a continuous model space H will make a difference in terms of
separating these samples. For example, as shown in Figure 5.1, all models
within each color-shaded area separate these data samples (plotted as
dots) in the same way so that all models within each color-shaded area
should be counted as only one effective model for this data set. Hence, the
generalization bound for an infinite model space should only depend on
the maximum number of effective models rather than the total number of
all possible models.

Vapnik–Chervonenkis (VC) theory [242, 243, 25] has been developed to
count the total number of effective models in a continuous model space in
terms of separating a finite number of data samples. A popular tool devel-
oped for this purpose is the so-called VC dimension. The VC dimension is
defined based on the concept of shattering a data set: given a data set of N
samples, for every possible label combination of these N samples, if we can
always find at least one model out of H to generate this label combination,
we say that H shatters this data set. In binary classification, each sample
can have two possible labels, and we have a total of 2N possible label
combinations for every N samples. If we can find a model out of H to
generate each of these 2N possible label combinations, H is said to shatter
this set of N samples. For example, if we assume H is a two-dimensional
(2D) linear model space, containing all straight lines in a 2D space, given
the set of three points in Figure 5.2, we have in total 23 = 8 possible label
combinations. As shown in Figure 5.2, we can find at least one straight line
to separate these three points to generate every possible label combination.

The VC dimension of H is defined as the maximum number of points
that can be shattered by H. If the VC dimension of H is known to be H, it
means that H can shatter at least one set of H points (no need to shatter
all sets of H points), but H cannot shatter any set of H + 1 points.

Example 5.3.1 The VC Dimension of 2D Linear Models Is 3—Why?

1. The 2D linear models can shatter a set of three points, as shown in
Figure 5.2.

2. If we have another set of three points that are aligned in a straight
line, all 2D linear models actually cannot shatter this set. Verify it
and explain why this does not matter.
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3. If we have four points in a 2D space, verify that 2D linear models
cannot shatter any four points no matter how we arrange them. �

A general extension of this example is that the VC dimension of linear
models in Rn is n + 1. The VC dimension is a nice single numeric measure
that conveniently quantifies the overall modeling capacity of model space
H. The VC dimension of simple models is small, whereas that of complex
models should be large. However, in practice, it is still hard to accurately
estimate the VC dimension for most complex models, such as neural net-
works. For many amenable models that are practically useful in machine
learning, we have the following rule of thumb: Many exceptions exist. For example, the

model space y = f (x) = sin(x/a) with
one parameter a ∈ R is said to have a VC
dimension of ∞ because the behavior of
f (x) gets wild as a→ 0.

VC dimension ≈ number of free parameters.

As shown in [242, 243, 25], once we know the VC dimension of model
space H is H, the total number of effective models in H for a set of N
points is upper-bounded by{

= 2N if N < H

≤

(
eN
H

)H
if N ≥ H.

As the data size increases, the number of effective models in H grows
exponentially only for small data sets, and it slows down as a polynomial
growth after its size exceeds the VC dimension of H. Based on this result, a
VC generalization bound for H with a VC dimension of H can be derived
as follows [242, 243]: We have skipped some cumbersome de-

tails that are needed to derive the result
in Eq. (5.14). Interested readers may refer
to [25, 210].R( f ∗) ≤ Remp( f ∗ |DN ) +

√
8H(ln 2N

H + 1) + 8 ln 4
δ

N
(5.14)

holds at least in probability 1 − δ (∀δ ∈ (0, 1]) for any large data set (N ≥
H). In this case, the gap between the expected risk and the minimized

empirical risk is roughly at the order of O
(√

H
N

)
.

One striking advantage of the above VC bound is that it is totally problem-
independent and the same bounds hold for any data distributions. How-
ever, this may also be viewed as a major drawback since the bounds are
extremely loose for most problems.

Example 5.3.2 Limitations of the VC Generalization Bound

1. Case A: ASSUME we use N = 1, 000 data samples (the feature
dimension is 100) to learn a linear classifier (H = 101). We have
observed that the training error rate is 1 percent, and the test error
rate in a large held-out set is 2.4 percent. Now let us set δ = 0.001
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(with a 99.9 percent chance of being correct) and use the VC bound
to estimate the expected loss. We have

R( f ∗) ≤ 0.01 + 1.8123 = 182.23% (� 2.4%).

2. Case B: Same as case A, except N = 10, 000, and the test error rate
is 1.1 percent.

R( f ∗) ≤ 0.01 + 0.7174 = 72.74% (� 1.1%)

3. Case C: Same as case A, except the feature dimension is 1,000 (thus
H = 1, 001), and the test error rate is 3.8 percent.

R( f ∗) ≤ 0.01 + 3.690 = 370.0% (� 3.8%) �

The test error rates in this example serve as a good estimate for the ex-
pected risk R( f ) in each case because they are evaluated on some fairly
large unseen data sets. Example 5.3.2 clearly shows how loose the VC
bounds are for real problems. In some cases, the predicted upper bounds
are even beyond the natural range [0, 1] for zero–one loss. These cases
explain why the VC bound has an elegant form that can be intuitively
explained in theory but fails to provide any impacts for real-world prob-
lems. This calls for more research efforts in these areas to derive much
tighter generalization bounds (probably problem specific) for real ML
problems.

In summary, the main conclusions from the previous theoretical analysis
are as follows:

I ERM does not always result in good ML models that generalize well
on unseen data.

I In general, we have

expected risk ≤ empirical loss + generation bound.

I Generalization bounds depend on the chosen model space in ERM.

When simple models are used, the generalization bound is relatively tight,
but we may not be able to achieve a low enough empirical loss. When
complex models are used, the empirical loss can be easily reduced, but
meanwhile, the so-called regularization techniques must be applied to con-
trol generalization. The central idea of regularization is to enforce some
constraints to ensure ERM is conducted only over a subspace of H rather
than the whole allowed space of H. By doing so, the total number of
effective models considered in ERM decreases indirectly, and so does
the generalization bound. The following chapters will show how to com-
bine ERM with regularization to actually estimate popular discriminative
models, such as linear models and neural networks.
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Exercises

Q5.1 Based on the concept of the VC dimension, explain why the memorization approach using an unbounded
database in Example 5.2.1 is not learnable.

Q5.2 Estimate the VC dimensions for the following simple model spaces:

a. A model space of N distinct models, {A1, A2, · · · , AN }

b. An interval [a, b] on the real line with a ≤ b
c. Two intervals [a, b] and [c, d] on the real line with a ≤ b ≤ c ≤ d
d. Discs in R2

e. Triangles in R2

f. Rectangles in R2

g. Convex hulls in R2

h. Closed balls in Rd

i. Hyper-rectangles in Rd

Q5.3 In an ML problem as specified in Section 5.1, we use f ∗ to denote the model obtained from the ERM
procedure in Eq. (5.6):

f ∗ = arg min
f ∈H

Remp( f |DN ),

and we use f̂ to denote the best possible model in the model space H, that is:

f̂ = arg min
f ∈H

R( f )

We further assume the unknown target function is denoted as f̄ . By definition, we have R( f̄ ) = 0 and
Remp( f̄ |DN ) = 0. We can define several types of errors in ML as follows:

I Generalization error Eg:
Eg =

�� R( f ∗) − Remp( f ∗ |DN )
��

I Estimation error Ee:
Ee =

�� R( f ∗) − R( f̂ )
��

I Approximation error Ea:
Ea =

�� R( f̂ ) − R( f̄ )
�� = R( f̂ )

Use words to explain the physical meanings of these errors.
Section 5.3 showed that Eg ≤ B(N , H), where B(N , H) is the generalization bound defined in Eq. (5.10). In
this exercise, prove the following properties:

a. R( f ∗) ≤ Ee + Ea

b. Remp( f ∗ |DN ) ≤ Eg + Ee + Ea

c. Ee ≤ 2 · B(N , H)
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This chapter first focuses on a family of the simplest functions for dis-
criminative models, namely, linear models. This discussion treats linear
function y = wᵀx or affine function y = wᵀx + b equally because both
behave similarly in most machine learning problems. Throughout this
book, linear models include both linear and affine functions. This chapter
mainly uses simple two-class binary classification problems as an example
to discuss how to use different machine learning methods to solve binary
classification with a linear model and briefly discusses how to extend it to
deal with multiple classes at the end of each section. Finally, this chapter
also briefly introduces the famous kernel trick to extend linear models into
nonlinear models. The function y = wᵀx + b is traditionally

called an affine function because it does
not strictly satisfy the definition of linear
functions, such as zero input leading to
zero output.
However, an affine function can be refor-
mulated as a linear function in a higher-
dimensional space. For example, denot-
ing x̄ = [x; 1] and w̄ = [w; b], then we
have

y = wᵀx + b = w̄ᵀx̄.

Generally speaking, a binary classification problem is normally formulated
as follows. Assume a set of training data is given as

DN =
{
(xi , yi) | i = 1, 2, · · · N

}
,

where each feature vector is a d-dimensional vector xi ∈ Rd , and each
binary label yi ∈ {+1,−1} equals to +1 for one class and −1 for another.
Based on DN , we need to learn a linear model y = wᵀx + b (or y = wᵀx),
where w ∈ Rd and b ∈ R, to separate these two classes. Depending on the
given training set DN , we have two scenarios (as shown in Figure 6.1):

1. Linearly separable cases, where at least one linear hyperplane exists to
perfectly separate all samples in the training set

2. Linearly nonseparable cases, where no linear hyperplane exists to
perfectly separate all samples

Figure 6.1: Linearly separable (left) ver-
sus nonseparable (right) cases in binary
classification, where each sample is plot-
ted as a point, and its color indicates its
class label.

The following sections discuss how to use different learning algorithms
to learn linear models for these two scenarios. These algorithms include
the early perceptron, simple linear regression, minimum classification error
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estimation, the popular logistic regression, and the famous support vector
machines (SVMs). We will highlight the differences among these learning
methods and discuss their pros and cons.

6.1 Perceptron

The perceptron is one of the earliest machine learning algorithms and
was initially proposed by F. Rosenbaltt in 1957 [200]. A solid theoretical
guarantee was also established for linearly separable cases by A. Novikoff
in 1962 [176]. Because of its simplicity, it led to excitement in the field
and eventually triggered the first boom of neural networks in the early
1960s.

The perceptron is a simple iterative algorithm to learn a linear model
from a training set DN to separate two classes. A linear model is used to
assign any input x to one of two classes according to the sign of the linear
function:

y = sign(wᵀx) =
{
+1 if wᵀx > 0
−1 otherwise.

(6.1)

The perceptron algorithm is shown in Algorithm 6.4. First, it initializes
the weight vector for the linear model. Next, it uses the linear model to
iterate over all samples in the training set: whenever a mistake is found,
the weight vector is immediately updated according to a simple rule.
This process continues until no mistake is found in the training set. If the
training set is linearly separable, the perceptron algorithm is guaranteed
to terminate after a finite number of updates, and it will return a linear
model that perfectly classifies the training set (see the following discussion
for why).

Algorithm 6.4 Perceptron

initialize w(0) = 0 , n = 0
loop

randomly choose a sample (xi , yi) in DN

calculate the actual output hi = sign(w(n)ᵀxi)
if upon a mistake: hi , yi then

w(n+1) = w(n) + yixi
n = n + 1

else if no mistake is found then
return w(n) and terminate

end if
end loop

Despite the perceptron algorithm being one of the first major machine
learning algorithms created more than 60 years ago, it clearly shares
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Figure 6.2: The optimal separating hyper-
plane achieves the maximum separation
margin from all data samples.

Figure 6.3: The distance formula from a
point to a hyperplane (refer to Example
2.4.1).

some similarities with many modern learning algorithms. However, there
are two important differences worth mentioning. First, the perceptron
algorithm does not rely on any hyperparameter. The algorithm may scan
the training set differently and result in a different sequence of updates,
but no hyperparameter is needed in the updating formula. In machine learning, a hyperparameter

is a parameter whose value must be set
manually before the learning process starts.

This will
make the learning easy and reproducible, unlike many modern learning
methods that heavily rely on sensitive hyperparameters. Second, at least
for linearly separable cases where optimal solutions exist, the perceptron
algorithm is theoretically guaranteed to terminate and return one of those
optimal solutions. The theoretical proof for the perceptron algorithm is
very intuitive and elegant. It is regarded as a pioneering work in learning
theory. Although it only considers some extremely simple cases, many
mathematical techniques used in this proof (e.g., margin bound) can still
be widely found in many recent theoretical works in machine learning.

The following discussion briefly introduces this important work and tries
to give readers a taste of theoretical analysis for a learning algorithm.

If the training set DN is given, we can always normalize all feature vectors
to ensure that all of them are located inside a unit sphere:

| |xi | | ≤ 1 ∀i = {1, 2, · · · , N}. (6.2)

Moreover, if training set DN is linearly separable, it means that there
exists some gap between the samples from two classes. This gap can be
mathematically defined as an optimal separating hyperplane that achieves
the maximum margin from all training samples, as shown in Figure 6.2.
This maximum margin hyperplane, denoted as ŵᵀx = 0, is unique for each
linearly separable set. Furthermore, ŵ is scaled to be of unit length (i.e.,
| |ŵ| | = 1). Note that the location of the hyperplane does not change when
ŵ is scaled by a real number.

According to the formula to compute the distance from a point to a hyper-
plane in geometry in Figure 6.3, the separation margin can be expressed
as follows:

γ = min
xi ∈DN

|ŵᵀxi |
| |ŵ| |

= min
xi ∈DN

|ŵᵀxi |. (6.3)

If the training set DN is linearly separable, the optimal maximum-margin
hyperplane ŵ exists, and the gap between two classes can be quantitatively
measured as 2γ.

Theorem 6.1.1 If the perceptron algorithm is run on a linearly separable
training set DN , the number of mistakes made on DN is at most 1/γ2. In
other words, the perceptron algorithm will terminate after at most d1/γ2e

updates and return a hyperplane that perfectly separates DN .
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Proof:

Step 1:

Based on the margin definition in Eq. (6.3), for any xi ∈ DN , we have

|ŵᵀxi | ≥ γ.

Because ŵ perfectly separates all samples in DN , we can get rid of the
absolute sign by multiplying its own label:

yiŵᵀxi ≥ γ ∀i, (xi , yi) ∈ DN . (6.4)

Step 2:

When we run the perceptron algorithm on DN , we record all mistakes (all
pairs of sample and label) made by the algorithm as follows:

M= {(x(1), y(1)), (x(2), y(2)), · · · , (x(M), y(M))},

where each pair is from DN , and the number of mistakes is M . The number
of mistakes, M , could be very large because the same sample in DN could
be repeatedly recorded in M.

Because of Eq. (6.4), we have∑
n∈M

y(n)ŵᵀx(n) ≥ M · γ. (6.5)

Furthermore, we have

M · γ ≤
∑
n∈M

y(n)ŵᵀx(n)

= ŵᵀ
( ∑
n∈M

y(n)x(n)
)

≤ ‖ŵ‖ ·

∑
n∈M

y(n)x(n)
 (Cauchy–Schwarz inequality)

=

∑
n∈M

y(n)x(n)
 (‖ŵ‖ = 1 by definition). (6.6)

Cauchy–Schwarz inequality:

|uᵀv | ≤ ‖u‖ · ‖v‖ .

Step 3:

In the perceptron algorithm, every mistake (x(n), y(n)) is used to update the
weight vector from w(n) to w(n+1):

w(n+1) = w(n) + y(n)x(n).



6.1 Perceptron 111

Therefore, we have

Note that we initialize w(0) = 0.

∑
n∈M

y(n)x(n)
 =

∑
n∈M

(
w(n+1) −w(n)

) = w(M+1) −w(0)
 = w(M+1)


=

√w(M+1)
2
=

√∑
n∈M

( w(n+1)
2
−

w(n)
2

)
=

√∑
n∈M

( w(n) + y(n)x(n)
2
−

w(n)
2

)

=

√√√√√√√∑
n∈M

(
�
�
��w(n)
2
+ 2y(n)w(n)ᵀx(n)︸            ︷︷            ︸

<0

+�
��*

(±1)2

(y(n))2
x(n)

2
−
�
�
��w(n)
2)

<

√∑
n∈M

x(n)
2
≤
√

M . (6.7)

By definition, (x(n), y(n)) was a mistake
when being evaluated by the model w(n);
thus, we have

y(n)(w(n))ᵀx(n) < 0.

Otherwise, this was not a mistake.

We have
x(n)

2
≤ 1 after data normaliza-

tion.Step 4:

By combining Eqs. (6.6) and (6.7), we have

M · γ ≤

∑
n∈M

y(n)x(n)
 < √M .

Finally, we derive
M < (1/γ)2.

In other words, the total number of mistakes made by the algorithm cannot
exceed (1/γ)2. �

In summary, if we run the perceptron algorithm on a linear separable
data set, the convergence of the algorithm is theoretically guaranteed. The
algorithm will converge to some hyperplane that will perfectly separate
two classes. The total number of model updates cannot exceed an upper
bound, (1/γ)2, where 2γ indicates the minimum gap between the training
samples of two classes. Note that the converged model is not necessarily
the maximum-margin hyperplane ŵ in Figure 6.2 [221]. On the other hand,
the perceptron Algorithm 6.4 can be slightly modified to approximately
achieve the maximum separation margin, leading to the so-called margin
perceptron algorithm (see Exercise Q6.2 for more details on this). However,
if the data set is not linearly separable, the behavior of the perceptron
algorithm is unpredictable, and the algorithm may update the model back
and forth and never terminate (see Freund and Schapire [69] for more).

The following sections discuss other machine learning methods for linear
models that can be applied to nonseparable cases.
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6.2 Linear Regression

Linear regression is a popular method for solving high-dimensional function-
fitting problems, but we can still apply the idea of linear regression to
classification problems as well. As will be shown later, the advantage of
linear regression is that model estimation is relatively simple, and it can be
solved by a closed-form solution without using an iterative algorithm.

The basic idea in linear regression is to establish a linear mapping from
input feature vectors x to output targets y = wᵀx. The only difference
for two-class classification is that output targets are binary: y = ±1. The
popular criterion to estimate the mapping function is to minimize the total
square error in a given training set, as follows:

w∗ = arg min
w

E(w) = arg min
w

N∑
i=1

(wᵀxi − yi)
2, (6.8)

where the objective function E(w)measures the total reconstruction error
in the training set when the linear model is used to construct each output
from its corresponding input.

This learning criterion is called the least-
square error or minimum mean-squared er-
ror.

By constructing the following two matrices:

X =


xᵀ1
xᵀ2
...

xᵀN

N×d
y =


y1
y2
...
yN

N×1

we can represent the objective function E(w) as follows:

E(w) =
Xw − y

2
= (Xw − y)ᵀ(Xw − y)

= wᵀXᵀXw − 2wᵀXᵀy + yᵀy.

By diminishing the gradient ∂E(w)
∂w = 0, we have

2XᵀXw − 2Xᵀy = 0.

Next, we derive the following closed-form solution for the linear regres-
sion problem:

w∗ =
(
XᵀX

)−1
Xᵀy, (6.9)

where we need to invert a d × d matrix XᵀX, which is expensive for high-
dimensional problems.

In practice, we often use a gradient de-
scent method to solve linear regressions
to avoid the matrix inversion. See Exer-
cise Q6.6.

Once the linear model w∗ is estimated as in Eq. (6.9), we can assign a label
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Figure 6.4: The step function H(x).

to any new data x based on the sign of the linear function:

y = sign(w∗ᵀx) =
{
+1 if w∗ᵀx > 0
−1 otherwise.

(6.10)

Linear regression can be easily solved by a closed-form solution, but it may
not yield good performance for classification problems. The main reason
is that the square error used in training models does not match well with
our goal in classification. For classification problems, our primary concern
is to reduce the misclassification errors rather than the reconstruction error.
The following sections discuss other machine learning methods that allow
us to measure the classification errors in certain ways.

6.3 Minimum Classification Error

For classification problems, empirical risk minimization (ERM) suggests
minimizing the zero–one classification errors on the training set. This
section discusses how to construct a sensible objective function that counts
the 0-1 training errors.

If the classification rule in Eq. (6.10) is used, given any linear model f (x) =
wᵀx, then for each training sample (xi , yi) in the training set, whether
it leads to a misclassification error actually depends on the following
quantity:

−yiwᵀxi =
{
> 0 =⇒ misclassification
< 0 =⇒ correct classification.

(6.11)

This quantity can be embedded into the step function H(·) (as shown in
Figure 6.4) to count the 0-1 misclassification error for (xi , yi) as H(−yiwᵀxi).
Furthermore, it can be summed over all samples in the training set to
result in the following objective function:

E0(w) =
N∑
i=1

H(−yiwᵀxi),

which strictly counts the 0-1 training errors for any given model w. How-
ever, this objective function is extremely difficult to optimize because the
derivatives of the step function H(·) are 0 almost everywhere except the
origin. A common trick to solve this problem is to use a smooth function
to approximate the step function. The best candidate for this purpose is
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Figure 6.5: The sigmoid function l(x).

the well-known sigmoid function (a.k.a., logistic sigmoid):

l(x) =
1

1 + e−x
, (6.12)

where the sigmoid function l(x) is differentiable everywhere, and it can
approximate the step function fairly well as long as its slope is made to be
sharp enough (by scaling x), as shown in Figure 6.5.

If we use the sigmoid function l(·) to replace the step function H(·) in the
previous objective function, we derive a differential objective function as
follows:

E1(w) =
N∑
i=1

l(−yiwᵀxi), (6.13)

where l(−yiwᵀxi) is a quantity between 0 and 1, which is sometimes called
a soft error, as opposed to either a 0 or 1 hard error measured by the step
function. Therefore, the objective function E1(w) actually measures the
total soft errors on the training set. The learning algorithm that minimizes
E1(w) is usually called the minimum classification error (MCE) method.

Note that the minus sign in l(−yiwᵀxi )

can be merged with w, which simplifies
the formula but does not change the learned
model. In this case,

E1(w) =
N∑
i=1

l(yiwᵀxi ).

The
gradient of E1(w) can be easily computed as follows:

∂E1(w)
∂w

=

N∑
i=1

yi l(yiwᵀxi)
(
1 − l(yiwᵀxi)

)
xi . (6.14)

dl(x)

dx
=

e−x

(1 + e−x )2

= l(x)
(
1 − l(x)

)
.

(6.15)
In MCE, this gradient is used to minimize the soft error E1(w) itera-
tively based on any gradient descent or stochastic gradient descent (SGD)
method.

6.4 Logistic Regression

Logistic regression is a very popular and simple method for many practical
classification tasks. Logistic regression is widely used when feature vectors
are manually derived in feature engineering. Logistic regression may be
derived under several contexts (see Section 11.4). This section will show
that logistic regression is actually closely related to the MCE method
described in the previous section.

1 − l(−x) = 1 −
1

1 + ex

=
ex

1 + ex

=
1

e−x + 1
= l(x).

In MCE, the quantity l(−yiwᵀxi) in Eq. (6.13) is interpreted as a soft error
count of misclassifying one training sample. Because l(−yiwᵀxi) is a real
number between 0 and 1, it is also possible to view l(−yiwᵀxi) as the
probability of making an error on the training sample (xi , yi) using the
model w. In this case, the probability of making a correct classification on
(xi , yi) equals to 1 − l(−yiwᵀxi) = l(yiwᵀxi). Assuming all samples in the
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Figure 6.6: Comparison of gradient
weights of MCE and logistic regression.

training set are independent and identically distributed (i.i.d.), the joint
probability of making a correct classification for all samples in the training
set can be expressed as follows:

L(w) =
N∏
i=1

l(yiwᵀxi).

Logistic regression aims to learn a linear model w to maximize the joint
probability of correct classification. Because the logarithm is a monotonic
function, it is equivalent to maximizing

ln L(w) =
N∑
i=1

ln l(yiwᵀxi). (6.16)

Then, we can derive the gradient for logistic regression as follows:

∂ ln L(w)
∂w

=

N∑
i=1

yi

(
1 − l(yiwᵀxi)

)
xi , (6.17)

and a gradient descent or SGD method can be used to minimize − ln L(w)
to derive the solution to the logistic regression.

When we compare the MCE gradients in Eq. (6.14) with the gradients of
the logistic regression in Eq. (6.17), we can notice that they are closely
related. However, as shown in Figure 6.6, the MCE gradient weights
(in red) indicate that the MCE learning focuses more on the boundary
cases, where |yiwᵀxi | is close to 0, because only the training samples
near the decision boundary generate large gradients. On the other hand,
the gradient weights of the logistic regression (in blue) show that the
logistic regression generates significant gradients for all misclassified
samples, where yiwᵀxi is small. As a result, logistic regression may be
quite sensitive to outliers in the training set. Generally speaking, logistic
regression generates larger gradients so that it may converge faster than
MCE.

Finally, we can extend the previous formulations of the logistic regression
and the MCE training to multiple-class classification problems by simply
replacing the previous sigmoid function with the following function from
x (∈ Rn) to z (∈ Rn):

zi =
exi∑n
j=1 ex j

∀i = {1, 2, · · · , n}, (6.18)

where the outputs are all positive and satisfy the sum-to-1 constraint. This
function is traditionally called the softmax function [36, 35]. Its output
behaves like a discrete probability distribution over n classes. Refer to
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Figure 6.7: The maximum-margin hyper-
plane (in red) versus other hyperplanes
(in blue) perfectly separating samples.

Exercises Q6.4 and Q6.5 for how to derive MCEs and logistic regressions
for multiple-class problems.

6.5 Support Vector Machines

This section introduces SVMs, an important family of discriminative mod-
els. The initial concept of SVMs stems from deriving the maximum margin
separating hyperplane for linearly separable cases, similar to what we
have discussed for the perceptron algorithm. Unlike the perceptron, the
power of SVMs lies in the fact that SVMs can be nicely extended to compli-
cated scenarios. First, the so-called soft margin is introduced and extended
to the nonseparable cases, which is called soft SVM formulation. Second,
the kernel trick is used to extend the SVM formulation from linear models
to nonlinear ones, where a preselected nonlinear kernel function can be ap-
plied to data prior to linear models. The beauty of SVMs is that all of these
different SVM formulations actually end up with the same optimization
problem, namely, quadratic programming, which can be solved cleanly be-
cause of its theoretically guaranteed convexity. More importantly, a deeper
investigation of the SVM formulation actually suggests a more general
learning framework for discriminative models, which will be discussed in
detail in the next chapter.

6.5.1 Linear SVM

As we know, for linearly separable cases, we can use the simple percep-
tron algorithm to derive a hyperplane that perfectly separates the training
samples. We also know that the perceptron algorithm does not normally
lead to the maximum-margin hyperplane ŵ shown in Figure 6.2. The
central problem in the initial SVM formulation is how to design a learning
method to derive this maximum-margin hyperplane for any linearly sep-
arable case. According to geometry, it is known that there always exists
only one such maximum-margin hyperplane for any linearly separable
case. As shown in Figure 6.7, in terms of separating the training samples,
this maximum margin hyperplane (in red) is equivalent to any other hy-
perplane (in blue) found by the perceptron because all of them give the
lowest empirical loss. However, when being used to classify unseen data,
this maximum-margin hyperplane tends to show some advantages. For
example, it achieves the maximum separation distance from all training
samples, so it may be more robust to noises in the data, where small
perturbations in the data are unlikely to push them to cross the decision
boundary to result in misclassification errors. Also, it is often said that
this maximum-margin hyperplane has better generalization capability
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Figure 6.8: The maximum-margin hyper-
plane is scaled.

with new, unseen data than others because of its tighter generalization
bound.

In this part, we first derive the initial SVM formulation, called the linear
SVM, which finds the maximum separation hyperplane for any linearly
separable case. To be consistent with most SVM derivations in the liter-
ature, we will use the affine function y = wᵀx + b instead of the linear
function y = wᵀx for all SVMs. Of course, the mathematical differences
between the two are minor.

It is well known that the distance from any sample xi to a hyperplane
y = wᵀx+ b is calculated as |w

ᵀxi+b |
| |w | | . If this sample is correctly classified by

the hyperplane, we can use its label yi to get rid of the absolute sign in the
numerator as yi (wᵀxi+b)

| |w | | . If a hyperplane y = wᵀx+ b perfectly separates all
samples in a linearly separable training set DN , the minimum separation
distance of this hyperplane from all samples can be expressed as follows:

γ = min
xi ∈DN

yi(wᵀxi + b)
| |w| |

.

This maximum-margin hyperplane can be found by searching for the
maximum separation distance, which leads to the following maxmin opti-
mization problem:

{w∗, b∗} = arg max
w,b

γ = arg max
w,b

min
xi ∈DN

yi(wᵀxi + b)
| |w| |

. (6.19)

If we treat the unknown maximum margin γ as a new free variable, we can
reformulate the previous maxmin optimization problem into a standard
constrained optimization problem, as follows:

Problem SVM0:
max
γ,w,b

γ

subject to

yi(wᵀxi + b)
| |w| |

≥ γ ∀i ∈ {1, 2, · · · , N}

The difficulties in solving the optimization problem of SVM0 are as follows:
(i) it contains a large number of constraints, each of which corresponds to
one training sample in DN ; (ii) each constraint contains a fraction of two
complex parts.

Next, let us see how to apply some mathematical tricks to simplify this
optimization problem into some more tractable formats. First of all, if we
scale both w and b in a hyperplane y = wᵀx + b with any real number,



118 6 Linear Models

it does not change the location of the hyperplane in the space. For the
maximum-margin hyperplane, we can always scale {w, b} properly to
ensure the closest data points from both sides yield wᵀx + b = ±1, as
shown in Figure 6.8. In this case, the maximum margin is equal to the
distance between the two parallel hyperplanes (shown as two dashed
lines): 2γ = 2

| |w | | (because the numerator in the distance formula is equal to
1 after scaling). Also, maximizing the margin 2γ is the same as minimizing
| |w| |2 = wᵀw. Finally, another condition for 2γ = 2

| |w | | to hold is to ensure
that none of the training samples is located between these two dashed
lines, that is, yi(wᵀxi + b) ≥ 1, for all xi in the training set.

Putting it all together, we reformulate the optimization problem of SVM0
into the following equivalent optimization problem:

Problem SVM1:
min
w,b

1
2

wᵀw

subject to

yi(wᵀxi + b) ≥ 1 ∀i ∈ {1, 2, · · · , N}In SVM1, 1
2 is added for notation conve-

nience, to be shown later.

In order to get rid of a large number of constraints in SVM1, we consider
the Lagrange duality of SVM1. For each inequality constraint in SVM1,
we introduce a Lagrange multiplier, αi ≥ 0 (∀i ∈ {1, 2, · · · , N}) and derive
the Lagrangian as follows:

L
(
w, b, {αi}

)
=

1
2

wᵀw +
N∑
i=1

αi

(
1 − yi(wᵀxi + b)

)
. (6.20)

And the Lagrange dual function can be obtained by minimizing the La-
grangian over w and b:

L∗({αi}) = inf
w,b

L
(
w, b, {αi}

)
.

In this case, the Lagrange dual function can be derived in a closed form
by diminishing the following gradients:

∂

∂w
L
(
w, b, {αi}

)
= 0

=⇒ w −
N∑
i=1

αi yixi = 0

=⇒ w∗ =
N∑
i=1

αi yixi . (6.21)
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∂

∂b
L
(
w, b, {αi}

)
= 0.

=⇒

N∑
i=1

αi yi = 0 (6.22)
1. We know

1
2

wᵀw =
1
2

( N∑
i=1

αiyixi

)ᵀ N∑
i=1

αiyixi

=
1
2

N∑
i=1

N∑
j=1

αiαjyiyjx
ᵀ
i x j .

2. Because of Eq. (6.22),

b

N∑
i=1

αiyi = 0.

3. We have

−

N∑
i=1

αiyiwᵀxi = −wᵀ
N∑
i=1

αiyixi

= −
( N∑
i=1

αiyixi

)ᵀ N∑
i=1

αiyixi

= −

N∑
i=1

N∑
j=1

αiαjyiyjx
ᵀ
i x j .

Substituting Eqs. (6.21) and (6.22) into the Lagrangian in Eq. (6.20), we
have the Lagrange dual function as follows:

L∗({αi}) =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαj yi yjx
ᵀ
i xj . (6.23)

See the margin note for some intermediate steps if necessary.

If we introduce the following vectors and matrix:

α =


α1
...
αN

N×1

y =


y1
...
yN

N×1

1 =


1
...
1

N×1

and

Q =

[
Qi j

]
N×N

=

[
yyᵀ

]
N×N

�


xᵀ1 x1 · · · xᵀ1 xN

... xᵀi xj

...
xᵀNx1 · · · xᵀNxN

N×N
x =


x1
x2
...

xN

N×1

y =


y1
y2
...

yN

N×1

x � y =


x1y1
x2y2

...
xN yN

N×1

[
ai j

]
M×N

�

[
bi j

]
M×N

=

[
ai jbi j

]
M×N

where � denotes element-wise multiplication (see the margin note), we
can represent the Lagrange dual function as the following quadratic
form:

L∗(α) = 1ᵀα −
1
2
αᵀQα.

Because SVM1 satisfies the strong duality condition, it is equivalent to
maximizing the Lagrange dual function with respect to (w.r.t.) α, subject
to the constraint in Eq. (6.22) (i.e., yᵀα = 0 and αi ≥ 0 for all i). Therefore,
we have the following equivalent dual problem for linear SVMs:
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Problem SVM2:

max
α

1ᵀα −
1
2
αᵀQα

subject to
yᵀα = 0

α ≥ 0

Problem SVM2 is a standard quadratic programming problem that can be
directly solved by many off-the-shelf optimizers. A specific method for
solving this quadratic programming for SVMs is presented on page 126.
Once the solution to SVM2 is found as

α∗ =


α∗1
α∗2
...
α∗N


,

the maximum-margin hyperplane can be constructed using α∗. According
to Eq. (6.21), we have

w∗ =
N∑
i=1

α∗i yixi .

Next, let us look at an important property of α∗: the optimal solution
to SVM2 is normally sparse. In other words, α∗ usually contains only a
small number of nonzero elements, whereas the most elements in α∗ are
actually zeros. This can be explained by the Karush–Kuhn–Tucker (KKT)
conditions of the prime-dual problem in SVM1 and SVM2. If we have
found the optimal solution to the Lagrangian in Eq. (6.20) as w∗, b∗, α∗,
∀i ∈ {1, 2, · · · , N}, we know that the following complementary slackness
conditions hold:

α∗i (1 − yiw∗ᵀxi − yib∗) = 0. (6.24)

In other words, for any i, either α∗i = 0 or yi(w∗ᵀxi + b∗) = 1 must hold
for the optimal solution. As shown in Figure 6.8, only a small number of
samples that lie in either of two dashed lines satisfy yi(w∗ᵀxi + b∗)= 1;
thus, their corresponding α∗i , 0. For other samples that are located
outside the margin range (i.e., yi(w∗ᵀxi + b∗) > 1), the corresponding
α∗i = 0. Therefore, the maximum-margin hyperplane w∗ depends only
on those samples located on either of the dashed lines because they are
the only samples having nonzero α∗i . These training samples are called
support vectors. For the rest of the training samples, they do not affect the
maximum-margin hyperplane because they all have α∗i = 0. This tells us
that even if we remove them from the training set, we will end up with the
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same maximum-margin hyperplane for linear SVMs. Of course, we usu-
ally do not know which samples are support vectors until conducting
the optimization. The quadratic programming in SVM2 will help us to
identify which training samples are support vectors and which are not.

Because the final solution to the SVM depends on only a small number of
training samples, SVMs are sometimes called sparse models or machines.
Intuitively speaking, sparse models are usually not prone to outliers and
overfitting.

Finally, let us determine the bias b∗ for the maximum-margin hyperplane.
After we have obtained the optimal solution α∗ to Problem SVM2, we can
choose any nonzero element α∗i > 0. Based on Eq. (6.24), the corresponding
sample (xi , yi) has to be a support vector, which satisfies

As yi ∈ {+1,−1},

yi (w∗ᵀxi + b
∗) = 1

=⇒ w∗ᵀxi + b
∗ = yi .

yi(w∗ᵀxi + b∗) = 1.
Thus, we compute b∗ as follows:

b∗ = yi −w∗ᵀxi . (6.25)

6.5.2 Soft SVM

The linear SVM formulation discussed previously makes sense only for
linearly separable data. If the training samples are not linearly separable,
the maximum-margin hyperplane does not exist. However, the SVM for-
mulation can be extended to nonseparable cases based on a concept called
the soft margin.

As shown in Figure 6.9, if we cannot perfectly separate all training samples
with a strict margin measure, then we allow some samples to cross the
margin boundaries (shown as dashed lines). In this case, we will introduce
a nonnegative error term ξ for every sample in the training set. For each
sample that has crossed the margin boundary, the error term ξ is used to
measure the distance that it has passed the margin boundary. For those
samples located on the correct side of the margin boundary, their error
terms ξ should be 0. For each hyperplane y = wᵀx + b, the concept of the

Figure 6.9: The soft-margin formulation
for SVMs.
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soft margin is introduced to account for two things: (i) the margin of the
hyperplane, which is the same as before and equal to the distance between
the two dashed lines (as shown in Figure 6.9), and (ii) the total errors
introduced by this hyperplane on the whole training set. The soft SVM
formulation aims to optimize a linear combination of the two; namely, it
tries to maximize the margin as much as possible and simultaneously tries
to minimize the total introduced errors as well. By doing so, the soft SVM
can be applied to any training set. If the training set is linearly separable,
it may result in the same maximum-margin hyperplane as the linear SVM
formulation. However, if the training set is nonseparable, the soft SVM
formulation still leads to a hyperplane that optimizes the soft margin.

After slightly extending the formulation of SVM1 to take into account the
soft margin in the objective function, we have the primary problem for the
soft SVM formulation as follows:

Problem SVM3:

min
w,b,ξi

1
2

wᵀw +C
N∑
i=1

ξi

subject to

yi(wᵀxi + b) ≥ 1 − ξi and ξi ≥ 0 ∀i ∈ {1, 2, · · · , N}

C is a hyperparameter to control the trade-
off between the margin and error terms
in the soft margin.

We can apply the same Lagrangian technique as previously and derive the
dual problem for the soft SVM formulation as follows:

Problem SVM4:

max
α

1ᵀα −
1
2
αᵀQα

subject to
yᵀα = 0

0 ≤ α ≤ C

Here we use

0 ≤ α ≤ C

to indicate that every element in vector α
is constrained in [0,C].

We leave the derivation of SVM4 from SVM3 as Exercise Q6.7. It is quite
surprising that SVM4 for the soft SVM is almost identical to SVM2. The
only difference is that each dual variable in α is currently restricted in a
closed interval [0, C]. Of course, SVM4 can be solved by the same optimizer
as SVM2. Moreover, the solution to SVM4 will also be sparse and will
contain nonzero α∗i only for a small number of support vectors, which in
this case are defined as those samples that either lie on the dashed lines
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(0 < α∗i < C) or introduce a nonzero error ξi (α∗i = C). See Exercise Q6.7
for details on this.

6.5.3 Nonlinear SVM: The Kernel Trick

Note that nonlinear SVMs are not a linear
model anymore. They are included in this
chapter because they are highly relevant
to linear SVMs and can be solved using
the same optimization methods.

One limitation of the SVM formulation is that we can only learn a linear
model to separate two classes in the input space. Of course, in many
cases, especially for some hard problems in practice, we are interested in
learning some nonlinear separating boundaries for pattern classification.
An interesting idea for doing so is that we first map the original inputs x
into another feature space of much higher dimensions using a carefully
chosen nonlinear function: x̂ = h(x). As shown in Figure 6.10, even though
the original data set is linearly nonseparable in the original input space,
it may become linearly separable in a much higher-dimensional space.
Conceptually speaking, this is very likely to happen because we have more
power to apply a linear model in a higher-dimensional space due to the
increased model parameters. If the mapping function h(x) is invertible, the
linear boundary in the high-dimensional space actually corresponds to a
nonlinear boundary in the original input space because of the nonlinearity
introduced by the mapping function h(x).

Figure 6.10: Nonlinear mapping function
from the input space to a much higher-
dimensional feature space for nonlinear
SVMs.

The key idea of nonlinear SVMs is that we first select a nonlinear function
h(x) to map each input xi into h(xi) in a higher-dimensional space, and then
we follow the same SVM procedure as previously to derive the maximum
margin (or soft-margin) hyperplane in the mapped feature space. We still
solve the dual problem of this SVM formulation in the mapped feature
space. As shown in Eq. (6.23), the dual problem of the SVM formulation
only depends on the inner product of any two training samples (i.e., xᵀi xj ).
In this case, it corresponds to the inner product of any two mapped vectors
in the feature space (i.e., hᵀ(xi)h(xj )). In other words, as long as we know
how to compute hᵀ(xi)h(xj ), we will be able to construct the dual program
to learn the SVM model in the high-dimensional feature space and then
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derive the corresponding nonlinear model in the original input space.
There is no need for us to know the exact form of h(xj ).

In many cases, it is beneficial to directly specify hᵀ(xi)h(xj ) rather than
h(xj ), which is usually called the kernel function, denoted as

Φ(xi , xj ) = hᵀ(xi)h(xj ).

Because h(xj ) is a mapping from a low-dimensional space to a higher-
dimensional space, it is usually awkward and inefficient to specify it
directly. On the other hand, the kernel function is a function mapping
from two inputs in the low-dimension space to a real number in R; thus, it
is much more convenient to specify the kernel function than the mapping
function itself. Theoretically speaking, we can specify any function as the
kernel function Φ(xi , xj ) as long as it satisfies the so-called Mercer’s condi-
tion (see margin note). If Φ(xi , xj ) satisfies Mercer’s condition, it always
corresponds to a valid mapping function h(xj ), which we may not know
explicitly [45].

Mercer’s condition:
For any set of N samples in the input

space (e.g., {x1, x2, · · · , xN }), if the fol-
lowing N × N matrix[

Φ(xi , x j )

]
N×N

is always symmetric and positive definite,
then we says Φ(xi , x j ) satisfies Mercer’s
condition.

In practice, we usually choose one of the following functions forΦ(xi , xj ):

I Linear kernel:
Φ(xi , xj ) = xᵀi xj ,

which corresponds to an identity-mapping function.

I Polynomial kernel:

Φ(xi , xj ) = (x
ᵀ
i xj )

p or Φ(xi , xj ) = (x
ᵀ
i xj + 1)p ,

where p is the order of the polynomial. Each polynomial kernel
corresponds to a mapping function from the input space into a much
higher-dimensional feature space; see Exercise Q6.9 for more details
on this.

I Gaussian (or RBF) kernel:
RBF kernel stands for radial basis function
kernel.

Φ(xi , xj ) = exp(−γ | |xi − xj | |
2),

where γ is a hyperparameter to control the variance of the Gaussian.
We can show that an RBF kernel corresponds to a mapping from
the input space into a feature space that has an infinite number of
dimensions. See Exercise Q6.10 for more.

In addition, many other kernel functions can be designed to handle special
data types, such as sequences and graphs. This kernel technique to extend
linear SVMs into nonlinear ones can actually be applied to many machine
learning methods, where we can extend some well-established linear
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methods to nonlinear cases. Therefore, it is named the kernel trick in the
literature. Another application of the kernel trick in

machine learning is the kernel PCA method;
see Schölkopf et al. [216] for details.Interestingly enough, once the kernel trick is applied, the nonlinear SVM

formulation leads to the same optimization problem as SVM4. The only
difference is that we compute the Q matrix using the selected kernel
function Φ(xi , xj ), as follows:

Q =

[
Qi j

]
N×N

=

[
yyᵀ

]
N×N

�


Φ(x1, x1) · · · Φ(x1, xN )

... Φ(xi , xj )
...

Φ(xN , x1) · · · Φ(xN , xN )

N×N
Once the optimal solution to the quadratic programming is found as
α∗ = [α∗1 , · · · ,α∗N ]

ᵀ, which is also sparse, the nonlinear SVM model can be
constructed accordingly. For any new input x, the output is computed as
follows (see margin note):

y = sign
( N∑
i=1

α∗i yiΦ(xi , x) + b∗
)
. (6.26)

In this case, the SVM in the feature space
is first constructed as follows:

w∗ =
N∑
i=1

α∗i yih(xi ).

Then we have

y = (w∗)ᵀh(x) + b∗

=

N∑
i=1

α∗i yiΦ(xi , x) + b∗.

Similar to Eq. (6.25), the bias b∗ can be computed based on any support
vector (xk , yk ), where α∗

k
, 0 and α∗

k
, C, as follows:

b∗ = yk −

N∑
i=1

α∗i yiΦ(xi , xk ).

Figure 6.11: The separating boundary of a
nonlinear SVM using the RBF kernel [41].

As an example, if we use the RBF kernel to compute the matrix Q for some
hard binary classification data set, the final decision boundary for Eq. (6.26)
is as shown in Figure 6.11. It is clear to see that the separating boundary
between two classes in the input space is highly nonlinear because of the
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nonlinear RBF kernel function. The complexity of this separating boundary
also demonstrates that nonlinear SVMs are actually very powerful models
if a suitable kernel function is used.

6.5.4 Solving Quadratic Programming

As we have discussed, various SVM formulations lead to solving some
types of dense quadratic programming as follows:

min
α

L(α)︷             ︸︸             ︷
1
2
αᵀQα − 1ᵀα,

subject to yᵀα = 0, 0 ≤ α ≤ C, where

α =


α1
...
αN

N×1

are the optimization variables, and the following matrices are built from
the training data:

y =


y1
...
yN

N×1

1 =


1
...
1

N×1

Q =

[
Qi j

]
N×N

=

[
yyᵀ

]
N×N

�


Φ(x1, x1) · · · Φ(x1, xN )

... Φ(xi , xj )
...

Φ(xN , x1) · · · Φ(xN , xN )

N×N� denotes element-wise multiplication be-
tween two matrices of equal size.

Here, as an example, we will use a simple projected gradient descent
method in Algorithm 6.5 to solve this quadratic programming problem.
At each step, the gradient of the objective function L(α) is first computed,
and then it is projected into the hyperplane yᵀα = 0 to ensure the updated
parameters always satisfy the constraint.

This simple optimization method is suitable only for small-scale SVM
problems. For large-scale SVM problems, where the size of the Q matrix
may become extremely large, there are many other memory-efficient meth-
ods. One such example is the coordinate descent algorithm that optimizes
only a single αi at a time. In this case, we do not need to save the entire
matrix Q in memory all the time. As another example, refer to Exercise
Q6.12 for a popular optimization method called sequential minimization
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Algorithm 6.5 Projected Gradient Descent Algorithm for SVM

initialize α(0) = 0, and set n = 0
while not converged do

(1) compute the gradient:

∇L(α(n)) = Qα(n) − 1

(2) project the gradient to the hyperplane yᵀα = 0:

∇̃L(α(n)) = ∇L(α(n)) −
yᵀ∇L(α(n))
| |y| |2

y

(3) projected gradient descent:

α(n+1) = α(n) − ηn · ∇̃L(α(n))

ηn denotes the step sizes used in the gra-
dient descent.

(4) clip α(n+1) to [0, C]

A simple way to clip α(n+1) in step (4):
for all i = 1, · · · , N

α
(n+1)
i =

{
0 if α(n+1)

i < 0
C if α(n+1)

i > C.

Also, see Exercise Q6.11 for a better way
to clip α(n+1).

(5) n = n + 1
end while

optimization (SMO) [188], proposed particularly for SVMs in the literature,
that aims to optimize two variables αi and αj at a time.

6.5.5 Multiclass SVM

Although the previously described SVM formulations are restricted to
two-class binary-classification problems, they can be easily extended to
solve multiclass pattern-classification problems. A simple way to do so
is to construct many binary SVMs. For example, a binary SVM is built to
separate each pair of classes in the multiclass problem, which is called
the one-versus-one strategy. Alternatively, a binary SVM can be built to
separate each class from all other classes, called the one-versus-all strategy.
In the decision stage, a new unknown input is tested against all binary
SVMs, and the final decision is based on a majority-voting result among
all binary classifiers. This method is simple and effective, but it needs
to maintain a large number of binary SVMs, which is inconvenient. See
[189] for another method to combine multiple binary SVMs for multiclass
problems. Another method is to redefine margins or soft margins for
multiclass cases and directly extend the SVM learning formulation to
multiclass problems; see Weston and Watkins [250] and Crammer and
Singer [46] for more details.

In summary, we have gone through a long process to derive several SVM
formulations for various scenarios. As we have seen, the kernel trick has
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largely enhanced the power of SVM models. The nice part of SVM models
is that all different formulations lead to the same quadratic programming
problem, which can be solved by the same optimizer. Another advantage
is that learning an SVM involves only a small number of hyperparameters,
such as C and usually one or two more for the chosen kernel function. As
a result, the learning procedure for SVMs is actually quite straightforward,
as summarized in the following box.

SVM Learning Procedure (in a Nutshell)

Given a training set as DN =
{
(x1, y1), (x2, y2), · · · , (xN , yN )

}
:

1. Choose a kernel function Φ(xi , xj ).
2. Build the matrices Q, y, and e from DN and Φ(xi , xj ).
3. Solve the quadratic programming problem to get

α∗ = [α∗1, · · · α∗N ]
ᵀ and b∗.

4. Evaluate the learned model as follows:

y = sign
( N∑
i=1

α∗i yiΦ(xi , x) + b∗
)
.
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Lab Project II

In this project, you will implement several discriminative models for pattern classification. You can choose to
use any programming language for your own convenience. You are only allowed to use libraries for linear
algebra operations, such as matrix multiplication, matrix inversion, matrix factorization, and so forth. You are
not allowed to use any existing machine learning or statistics toolkits or libraries or any open-source codes for
this project. You will have to implement most of the model learning and testing algorithms yourself to practice
the various algorithms learned in this chapter. That is the purpose of this project.

Once again, you will use the MNIST data set [142] for this project, which is a handwritten digit set containing
60,000 training images and 10,000 test images. Each image is 28 by 28 in size. The MNIST data set can be
downloaded from http://yann.lecun.com/exdb/mnist/. In this project, for simplicity, you just use pixels as
raw features for the following models.

a. Linear Regression:
Use the linear regression method to build a linear classifier to separate the digits 5 and 8 based on all
training data of these two digits. Evaluate the performance of the built model. Repeat for the pair of 6 and
7, and discuss why the performance differs from that of 5 and 8.

b. MCE and logistic regression:
Use the MCE method and logistic regression to build two linear models to separate digits 5 and 8 based
on all training data of these two digits. Compare the performance of the MCE and logistic regression on
both training and test sets and discuss how these two learning methods differ. You may choose to use
any iterative optimization algorithm. Don’t just call any off-the-shelf optimizer: implement the optimizer
yourself.

c. SVM:
Use all training data for two digits 5 and 8 to learn two binary classifiers using linear SVM and nonlinear
SVM (with Gaussian RBF kernel), and compare and discuss the performance and efficiency of the linear
SVM and nonlinear SVM methods for these two digits. Next, use the one-versus-one strategy to build
binary SVM classifiers for all 10 digits, and report the best classification performance in the held-out
test images. Don’t call any off-the-shelf optimizers. Implement the SVM optimizer yourself using either
the projected gradient descent in Algorithm 6.5 or the sequential minimization optimization method in
Exercise Q6.12.

http://yann.lecun.com/exdb/mnist/
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Exercises

Q6.1 Extend the perceptron algorithm to an affine function y = wᵀx + b; also, revise the proof of Theorem 6.1.1
to accommodate the bias term b.

Q6.2 Given a training set Dwith a separation margin γ0, the original perceptron algorithm predicts a mistake
when y w(n)ᵀx < 0. As we have discussed in Section 6.1, this algorithm converges to a linear classifier that
can perfectly separate Dbut does not necessarily achieve the maximum margin. The margin perceptron
algorithm extends Algorithm 6.4 to approximately maximize the margin in the perceptron algorithm,
where it is considered to be a mistake when y w(n)ᵀx

‖w(n) ‖ <
γ
2 , where γ > 0 is a parameter. Prove that the number

of mistakes made by the margin perceptron algorithm is at most 8/γ2
0 if γ ≤ γ0.

Q6.3 Given a training set DN =
{
(xi , yi) | i = 1, 2, · · · N

}
with xi ∈ Rn and yi ∈ {+1,−1} for all i, assume we

want to use a quadratic function y = xᵀAx + bᵀx + c, where A ∈ Rn×n, b ∈ Rn, and c ∈ R, to map from
each input xi to each output yi in DN , often called quadratic regression. Derive the closed-form formula to
estimate all parameters

{
A, b, c

}
based on the least-square-error criterion.

Q6.4 Extend the MCE method in Section 6.3 to deal with pattern-classification problems involving K > 2
classes.

Q6.5 Extend the logistic regression method in Section 6.4 to deal with pattern-classification problems involving
K > 2 classes.

Q6.6 Derive stochastic gradient descent algorithms to optimize the following linear models:

a. Linear regression
b. Logistic regression
c. MCE
d. Linear SVMs (Problem SVM1)
e. Soft SVMs (Problem SVM3)

Q6.7 Based on the Lagrange dual function, show the procedure to derive dual problems for soft SVMs:

a. Derive SVM4 from SVM3.
b. Explain how to determine which training samples are support vectors in soft SVMs. Which support

vectors lie on the margin boundaries? Which support vectors introduce nonzero error terms?
c. Derive b∗ for soft SVMs (also consider the case where all nonzero αi equal to C).

Q6.8 Derive an efficient way to compute the matrix Q in the SVM formulation using the vectorization method
(only involving vector/matrix operations without any loop or summation) for the following kernel
functions:

a. The linear kernel function
b. The polynomial kernel function
c. The RBF kernel function

Q6.9 Show that the second-order polynomial kernel (i.e., Φ(xi , xj ) =
(
xᵀi xj + 1

)2) corresponds to the following
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mapping function h(x) from Rd to Rd(d+1):

x =


x1
x2
...

xd


7→



x2
1
...

x2
d√

2x1x2
...

√
2xd−1xd√

2x1
...
√

2xd



.

Then, consider the mapping function for a third-order polynomial kernel and a general pth order polyno-
mial kernel.

Q6.10 Show the mapping function corresponding to the RBF kernel (i.e., Φ(xi , xj ) = exp(− 1
2 | |xi − xj | |

2)).

Q6.11 Algorithm 6.5 is not optimal because it attempts to satisfy two constraints alternatively in each iteration.
A better way is to compute an optimal step size η∗ at each step, which satisfies both constraints:

η∗ = arg max
η

η,

subject to
0 ≤ α(n) − η · ∇̃L(α(n)) ≤ C

0 ≤ η ≤ ηn.

use the KKT conditions to derive a closed-form solution to compute the optimal step size η∗.

Q6.12 In Problem SVM4, if we only optimize two multipliers αi and αj and keep all other multipliers constant,
we can derive a closed-form solution to update αi and αj . This idea leads to the famous SMO for SVMs,
which selects only two multipliers to update at each iteration. Derive the closed-form solution to update
any two αi and αj for Problem SVM4.
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As discussed in Chapter 5, when we learn a discriminative model from
given training samples, if we strictly follow the idea of empirical risk
minimization (ERM) and consider ERM as the only goal in learning, it may
not lead to the best possible performance as a result of overfitting. This
chapter introduces a more general learning framework for discriminative
models, namely, minimizing the regularized empirical risk. It discusses a
variety of ways to formulate the regularized empirical risk for different
learning tasks and explains why regularization is important for machine
learning (ML). Moreover, it introduces how to apply this general method to
several interesting ML tasks, such as regularized linear regression (ridge
and least absolute shrinkage and selection operator [LASSO]), matrix
factorization, and dictionary learning.

7.1 A General Framework to Learn
Discriminative Models

The primary problem of soft SVM (SVM3):

min
w,b,ξi

1
2

wᵀw +C
N∑
i=1

ξi ,

subject to

yi (wᵀxi + b) ≥ 1 − ξi and ξi ≥ 0

∀i ∈ {1, 2, · · · , N }.

First of all, let us revisit the primary problem of the soft support vector
machine (SVM) formulation (see margin note), that is, Problem SVM3
discussed on page 122. Based on the two constraints in SVM3 for each
variable ξi (for all i = 1, 2, · · · , N), we have

ξi ≥ 1 − yi(wᵀxi + b)

ξi ≥ 0.

7 Learning Discriminative Models in General
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Figure 7.1: The hinge function H1(x).

We may equivalently combine the two inequalities into a compact expres-
sion, as follows:

ξi ≥ max
(
0, 1 − yi(wᵀxi + b)

)
.

We define a new function:

H1(x) = max(0, 1 − x),

which is normally called the hinge function. As shown in Figure 7.1, the
hinge function H1(x) is a monotonically nonincreasing piece-wise linear
function. We can represent each ξi using the hinge function as follows:

ξi ≥ H1

(
yi(wᵀxi + b)

)
.

As shown in SVM3, because we minimize the summation of all ξi in the
objective function, the minimization will force all ξi to take the lower
bounds specified by the hinge function. Therefore, we can immediately
derive the optimal value for each ξi in SVM3 as

ξ∗i = H1

(
yi(wᵀxi + b)

)
∀i = 1, 2, · · · , N .

Recall that the binary-classification set-
ting, as in Eq. (6.11), yi (wᵀxi + b) indi-
cates whether the training sample (xi , yi )
leads to a misclassification error or not:

yi (wᵀxi + b){
< 0 =⇒ misclassification
> 0 =⇒ correct classification.

Therefore, H1
(
yi (wᵀxi + b)

)
indicates one

particular way to count errors using the
hinge function H1(·) as the loss function.

After we substitute these optimal values ξ∗i into SVM3, and because
wᵀw = ‖w‖2, we can reformulate the soft SVM problem as the following
unconstrained optimization problem:

min
w,b

[
N∑
i=1

H1

(
yi(wᵀxi + b)

)
︸                       ︷︷                       ︸

empirical loss

+ λ · ‖w‖2︸    ︷︷    ︸
regularization term

]
, (7.1)

where the regularization parameter λ is a hyperparameter used to balance
the contribution of the regularization term.

This formulation provides us with another perspective to view soft SVM
models. In the soft SVMs, we essentially learn a linear model by minimiz-
ing a regularized empirical loss, consisting of two terms:

1. The first term is the regular empirical loss summed over all train-
ing samples when evaluated using the hinge function as the loss
function.

2. The second term is a regularization term based on the L2 norm of
the model parameters.
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As shown in Problem SVM1 on page 118, at least for linear models, the
criterion of the maximum margin is equivalent to applying the L2 norm
regularization in learning.

More importantly, this formulation also suggests a fairly general frame-
work for us to learn discriminative models for various ML problems. We
may vary at least three dimensions in the previous formulation to result in
different ML problems. First, we may replace the linear model in Eq. (7.1)
with more sophisticated models, such as bilinear models (see Sections 7.3
and 7.4), quadratic models, or neural networks (see Chapter 8). Second,
we may use other loss functions rather than the hinge loss function H1(x).
Third, we may consider imposing other types of regularization terms in-
stead of the L2 norm. For example, we can extend it to a general Lp norm
for various p > 0. The following section first introduces many possible
loss functions that may be used to evaluate the empirical loss in Eq. (7.1)
and their pros and cons. Next, the chapter discusses why regularization
can help to avoid overfitting and also investigates the property of the Lp

norm for all p > 0 when it is used as a regularization term in ML.

7.1.1 Common Loss Functions in Machine Learning

If we inspect all objective functions discussed in Chapter 6, we can eas-
ily derive the underlying loss functions used in those ML methods. For
example, considering the objective function of logistic regression in Eq.
(6.16), we can identify that the loss function used in logistic regression
is − ln l(x) = ln(1 + e−x). Similarly, for the objective function of the linear
regression in Eq. (6.8), we can derive that its loss function is actually the
quadratic function (1 − x)2 (see margin note for why).

Given yi ∈ {+1,−1}, it is easy to verify
the following:(

yi − (wᵀxi + b)
)2

=
(
1 − yi (wᵀxi + b)

)2
.Table 7.1 summa-

rizes many popular loss functions used to evaluate the empirical risk in
ML. Interested readers are encouraged to verify these results.

ML method Loss function

— 0-1 loss: H(x) =


1 x ≤ 0

0 x > 0

Perceptron Rectified linear loss: H0(x) = max(0,−x)

MCE Sigmoid loss: l(x) = 1
1+ex

Logistic Regression Logistic loss: Hlg(x) = ln(1 + e−x)

Linear Regression Square loss: H2(x) = (1 − x)2

Soft SVM Hinge loss: H1(x) = max(0, 1 − x)

Boosting Exponential loss: He(x) = e−x

Table 7.1: Various loss functions used in
different ML methods.
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Figure 7.2: An illustration of popular loss
functions used in various ML methods.

Moreover, Figure 7.2 plots these loss functions for comparison. The loss
function specifies the way to count errors in an ML problem, and it plays
an important role when we construct the objective function for an ML
problem. There are a few issues we want to take into account when choos-
ing a loss function for our ML tasks.A function is convex if the line segment

between any two points on the graph of
the function lies above or on the graph.

First, we need to consider whether
the loss function itself is convex or not. If we choose a convex loss func-
tion, we may have a good chance of formulating the whole learning as a
convex optimization problem, which is easier to solve. Among the loss
functions in Table 7.1, we can easily verify that most of them are actually
convex, except the ideal 0-1 loss and the sigmoid loss l(x) used in MCE.
The second issue we need to consider in choosing the loss function is the
monotonic nonincreasing property; that is, a good loss function should
monotonically increase as x → −∞, whereas it should approach 0 for x > 0.
In other words, a good loss function should penalize misclassification er-
rors and reward correct classifications. As shown in Figure 7.2, most loss
functions are indeed monotonically nonincreasing, except the quadratic
loss H2(x) used in linear regression, which begins to increase for x > 1.
This explains why linear regression normally does not yield good per-
formance in classification because it may penalize correct classifications
for x > 1. On the other hand, some loss functions increase substantially
when x → −∞, such as exponential loss He(x). This property may make
the learned models prone to outliers in the training data because their
error counts may dominate the underlying objective function.

7.1.2 Regularization Based on Lp Norm

Let us first consider what role the regularization term in Eq. (7.1) actu-
ally plays and then study how to extend it to a more general way to do
regularization in ML.
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Generally speaking, when a suitable regularization parameter λ is used,
the unconstrained optimization problem in Eq. (7.1) is somewhat similar
to the following constrained optimization problem:

min
w,b

N∑
i=1

H1

(
yi(wᵀxi + b)

)
,

subject to
‖w‖2 ≤ 1.

It is evident that the regularization term forces it to learn a model only in
a constrained region instead of the entire valid model space. In this case,
the constrained region is inside the unit L2 hyper-sphere. According to
the theoretical analysis in Chapter 5, when the model space is constrained,
we essentially limit the total number of effective models considered in a
learning problem. This will implicitly tighten the generalization bound so
that it can eventually prevent the learned model from overfitting.

L2 norm:

‖w‖2 =
√
|w1 |2 + · · · + |wn |

2.

L1 norm:

‖w‖1 = |w1 | + · · · + |wn |.

L0 norm:

‖w‖0 = |w1 |
0 + · · · + |wn |

0.

Note that ‖w‖0 (∈ Z) equals to the num-
ber of nonzero elements in w.

L∞ norm:

‖w‖∞ = max
(
|w1 |, · · · , |wn |

)
.

Note that ‖w‖∞ equals to the largest mag-
nitude of all elements in w.

As we have shown, when the L2 norm regularization term is used in the
objective function for learning, it essentially constrains the learning to
search for the optimal model only inside an L2 hyper-sphere in the model
space. A natural way to extend this idea of regularization is to consider a
more general Lp norm for some other p > 0. For any positive real number
p > 0, the Lp norm is defined as follows:

‖w‖p =
(
|w1 |

p + |w2 |
p + · · · + |wn |

p
) 1

p .

When p = 2, the L2 norm is the usual Euclidean norm. It is also interesting
to consider a few special cases, such as p = 1, p = 0, and p = ∞ (see margin
note). If we use the Lp norm as the regularization term in Eq. (7.1), we
essentially constrain the model learning only inside the following unit Lp

hyperball in the model space:

‖w‖p ≤ 1.

As an example, Figure 7.3 plots what a unit Lp hyperball looks like in a
three-dimensional (3D) space for several typical p values. It is straightfor-
ward to verify the shapes of the unit Lp hyperballs in Figure 7.3 when p
takes these special values. For example, ‖w‖∞ = 1 corresponds to the unit
hypercube in the high-dimensional space, ‖w‖2 = 1 represents the regular
hyper-sphere, and ‖w‖1 = 1 is the octahedron-like shape in the high-
dimensional space. It is noticeable that the volume of a unit Lp hyperball
shrinks as we decrease p toward 0. When p = 0, ‖w‖0 = 1 degenerates into
some isolated line segments along all coordinate axes that are intersecting
only in the origin. In other words, when the Lp regularization term is used
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Figure 7.3: An illustration of Lp unit hy-
perballs, ‖w‖p ≤ 1, in a 3D space for
some typical p values.

Figure 7.4: An illustration of the differ-
ence between the L1 and L2 regulariza-
tion in a quadratic optimization problem.
(Source: [92].)

in ML, a smaller p value usually implies that stronger regularization is
imposed.

Another important property of the Lp hyperballs is that ‖w‖p ≤ 1 repre-
sents a convex set when p ≥ 1, but it becomes nonconvex for 0 ≤ p < 1. As
we know, a set is convex when the line segment joining any two points
in the set lies completely within the set. Therefore, p = 1 is usually the
smallest p value used in practice because the nonconvexity for 0 ≤ p < 1
imposes a huge challenge in the underlying optimization process.

An intriguing property of L1 regularization is that it normally leads to
some sparse solutions. Figure 7.4 shows the differences between L1 regular-
ization and L2 regularization when they are used to optimize a quadratic
objective function. When L1 regularization is used, the optimal solution to
the constrained optimization usually occurs in one of the vertexes of the L1
hyperball because gradient descent may slide over the flat surfaces until it
ends up at a vertex. These vertices correspond to some sparse solutions
because some coordinates of these vertices are 0. On the other hand, when
L2 regularization is used, the constrained optimization usually finishes
with a tangentially contacted point between two quadratic surfaces, which
normally corresponds to a dense solution.

Another way to explain why L1 regularization leads to sparsity is to
consider the gradient of the L1 norm:

∂‖w‖1
∂wi

= sgn(wi) =


1 wi > 0

0 wi = 0

−1 wi < 0.

(7.2)

Because the magnitude of the gradients for any model parameter wi re-
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mains constant unless wi = 0, the gradient descent algorithm tends to
continuously decrease the magnitude of all small parameters until they
actually become 0. On the other hand, the gradient of the L2 norm is
computed as follows:

∂‖w‖22
∂wi

= 2wi .

As wi gets closer to 0, the magnitude of its gradient also becomes smaller. In
other words, L2 regularization tends to modify wi values that are far away
from 0 rather than those wi values that are already small in magnitude. As
a result, L2 regularization normally leads to a solution containing many
small but nonzero wi values.

The remainder of the chapter looks at how to apply the general idea of
regularized ERM to learn discriminative models for some interesting ML
problems.

7.2 Ridge Regression and LASSO

In Section 6.2, we studied a standard linear regression problem, where
a linear function is used to fit a given training set by minimizing the
reconstruction error, which is measured with a square loss function. As
we have seen, a closed-form solution can be derived for this standard
linear regression. In this section, let us look at how to apply Lp norm
regularization to the standard linear regression problem. Regularization
is important in linear regression, especially when we need to estimate a
high-dimensional linear model from a relatively small training set.

First, when L2 norm regularization is used for linear regression, it leads to
the so-called ridge regression [87] in statistics. With the help of L2 regular-
ization, ridge regression is particularly useful for deriving more reliable
estimates when the number of model parameters is large. Similar to the
settings in Section 6.2, a linear function y = wᵀx is used to fit a training set:
DN =

{
(xi , yi) | i = 1, 2, · · · , N

}
. In ridge regression, we estimate the model

parameter w by minimizing the following regularized empirical loss:

w∗ridge = arg min
w

[ N∑
i=1

(wᵀxi − yi)
2 + λ · ‖w‖22

]
.

Following a treatment similar to that in Section 6.2, we can derive the
closed-form solution to the ridge regression as follows:

w∗ridge =
(
XᵀX + λ · I

)−1
Xᵀy, (7.3)
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where I denotes the identity matrix, and the ridge parameter λ serves as a
positive constant shifting the diagonals to stabilize the condition number
of the matrix XᵀX.The condition number of a square matrix is

defined as the ratio of its largest to small-
est eigenvalue. A matrix with a high con-
dition number is said to be ill-conditioned.

Second, when we apply L1 norm regularization to linear regression, it
leads to another famous approach in statistics, LASSO [236]. In LASSO, the
model parameters are estimated by minimizing the following regularized
empirical loss:

w∗lasso = arg min
w

[
1
2

N∑
i=1

(wᵀxi − yi)
2 + λ · ‖w‖1

]
︸                                     ︷︷                                     ︸

Qlasso(w)

. (7.4)

Unfortunately, no closed-form solution exists to solve this optimization
problem because the objective function is not differentiable everywhere.
Some iterative gradient descent methods, such as the subgradient method
or coordinate descent method, must be used to compute w∗lasso (see the
margin note for more details). With the help of L1 norm regularization,
LASSO normally leads to a sparse solution. Therefore, LASSO can improve
the accuracy of the linear regression models as a result of the strong L1
regularization. Meanwhile, the derived sparse solution usually selects a
subset of features rather than using all features, which may provide a
better interpretation of the underlying regression problem.

The gradient of the LASSO objective func-
tion can be represented as follows:

∂Qlasso(w)
∂w

=
( N∑
i=1

xix
ᵀ
i

)
w −

N∑
i=1

yixi

+λ · sgn(w),

where sgn(·) denotes the three-value sign
function in Eq. (7.2). In the coordinate de-
scent method [75], at each time point, an
element wi in w is selected and updated
based on the computed gradient. This pro-
cess is repeated until it converges.

7.3 Matrix Factorization

Because many real-world applications require us to factorize a gigantic
matrix into a product of two smaller matrices, matrix factorization serves
as the technical foundation to solve many important real-world problems.
As we know, many traditional linear algebra methods can be used to
factorize matrices, such as the well-known singular value decomposition
(SVD). In SVD, an n ×m rectangular matrix X (assuming n > m) can be
decomposed into a product of three matrices:[

X
]
n×m

=
[

U
]
n×m

[
Σ

]
m×m

[
V

]
m×m

,

where U ∈ Rn×m, V ∈ Rm×m, and Σ is an m × m diagonal matrix and its
nonzero diagonal elements are called singular values of X. We can merge Σ
with either U or V so that X is factorized as a product of two matrices as
follows: [

X
]
n×m

=
[

U
]
n×m

[
V

]
m×m

.

In this case, the matrices U and V are not much smaller than X. However,
the size of U and V can be trimmed based on the magnitudes of those
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Figure 7.5: An Illustration of using SVD
and truncated SVD to factorize an n ×m
matrix X.

Figure 7.6: An illustration of collabora-
tive filtering for recommendation.

singular values in Σ. As shown in Figure 7.5, if we only keep the top k
(� m) most significant singular values and ignore the other smaller sin-
gular values in Σ, then we end up truncating the corresponding columns
in U and the corresponding rows in V. In doing so, we will be able to
approximate the original n×m matrix X by a product of two much smaller
matrices: [

X
]
n×m

≈

[
U

]
n×k

[
V

]
k×m

(k � m, k � n).

This method is normally called truncated SVD, which is a conventional
method to factorize a huge matrix into two much smaller matrices in an
approximate way.

Here, let us first consider two interesting problems originating from some
real-world applications that rely on the matrix-factorization technique
for their solutions. The first example is the famous collaborative filtering
that is the core technology in most online recommendation systems. The
second example is the so-called latent semantic analysis in natural language
processing.

Example 7.3.1 Collaborative Filtering for Recommendation

In many online e-commerce platforms, if the platform can keep track of
all historical interactions between users and products (e.g., which user
bought which products or which user rated [liked or disliked] which
movies), this information becomes extremely useful for the platform
to know the characteristics of the users and products. Based on the
historical data, the platform will be able to develop automatic meth-
ods to recommend relevant products to each user to boost its revenue.
The core technique behind the automatic recommendation is matrix
factorization, which is usually called collaborative filtering in this context
[197].

In collaborative filtering, all historical interactions are first represented
with a huge user–product matrix X, as shown in Figure 7.6. Each row of
X represents a distinct user, and each column a distinct product. Each
element in X represents the interaction between a user and a product (e.g.,
how many times this user bought this product). We want to factorize
this large, sparse matrix into a product of two smaller, dense matrices,
U and V, as in Figure 7.6. Each row vector of Uᵀ may be viewed as a
compact representation of each user. By computing the distances between
these row vectors, we will be able to know the similarity between these
users. Similarly, each column vector of V may be viewed as a compact
representation of a product, and the distances between these column
vectors represent the similarity between these products. Based on these
similarity measures, the platform will be able to recommend to a user some
products that are similar to the products previously bought by this user or
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Figure 7.7: An illustration of LSA to learn
semantic word representations.

recommend some products previously bought by other users similar to
this user. �

Example 7.3.2 Latent Semantic Analysis

Latent semantic analysis (LSA) is a technique to learn semantic rep-
resentations for words and documents in a natural language process
[50]. The key assumption behind LSA is the distributional hypothesis
in linguistics—that is, "words that are close in meaning will occur in
similar pieces of text" [91].

As shown in Figure 7.7, we first construct a word–document matrix X
from a large text corpus. The rows of matrix X represent the unique words
in a language, and the columns represent all documents in the corpus.
The elements in X contain word counts per document or other normalized
frequency measures [240]. Similarly, assume we can factorize the large
matrix X into a product of U and V. Each row vector in Uᵀ can be viewed
as a compact semantic representation for a word, and the distances be-
tween them represent semantic similarity between different words. On the
other hand, all column vectors in V may be treated as compact, fixed-size
representations for all documents in the corpus, which usually vary in
length. �

In principle, the traditional SVD algorithm in linear algebra can be used to
factorize any matrix, as previously described. However, there are several
difficulties when we apply the SVD method to real-world problems, as
in Examples 7.3.1 and 7.3.2. First of all, the traditional SVD algorithm is
computationally expensive in terms of both running time and memory
usage. Most matrices arising from real-world applications are extremely
large in size. For example, in the case of collaborative filtering, it is normal
to have hundreds of millions of users and hundreds of thousands of
products.

The time complexity to do SVD on an n ×

m matrix is O(n2m + nm2 +m3).

In this case, the user–product matrix is normally very sparse, but
it is extremely large in size. It may be very inefficient to run the standard
SVD algorithm on these huge, sparse matrices. Second, many matrices
originating from practical applications are usually partially observed. In
other words, we only know some elements in matrix X, and the remaining
ones are missing or unknown. For example, if matrix X is used to represent
the ratings (like or dislike) of a large number of users on many movies,
we cannot expect each user to rate all available movies because they may
not have a chance to watch most movies. No linear algebra method can
be used to factorize a partially observed matrix. On the other hand, if we
can factorize a partially observed matrix X into two smaller matrices U
and V, we essentially have filled all missing elements in X because any
missing element can be estimated by a product of a row vector in U and a
column vector in V. Therefore, factorization of partially observed matrices
is sometimes also called matrix completion.
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Figure 7.9: The row indices of all ob-
served elements in column j is denoted
as Ωc

j .

In the following, we will formulate matrix factorization as an ML problem,
where the matrix X or its observed part is treated as training data, and two
smaller matrices U and V are treated as unknown parameters to be learned
[131]. As we will see, the solution to this ML problem tends to be much
more efficient than the traditional SVD method for large, sparse matrices,
and more importantly, it is equally applicable to both fully observed and
partially observed matrices.

Figure 7.8: Matrix factorization as an ML
problem.

Given an n × m matrix X, as shown in Figure 7.8, we want to learn two
matrices U (∈ Rk×n) and V (∈ Rk×m) to approximate X as

X ≈ UᵀV,

where k is a hyperparameter, usually k � n, m. If X is partially observed,
we denote the indices of all observed elements in X as a set Ω =

{
(i, j)

}
.

If X is fully observed, Ω simply contains
all element indices.

Furthermore, we useΩr
i to denote all column indices of observed elements

in the ith row of X, and we use Ωc
j for all row indices of observed elements

in the jth column of X, as shown in Figure 7.9.

If we want UᵀV to be as close to X as possible, we may define a squared
loss over all observed elements in X:∑

(i,j)∈Ω

(
xi j − uᵀi vj

)2,

where ui denotes the ith column vector in U, and vj denotes the jth
column vector in V.

Moreover, we can impose L2 norm regularization on all row vectors of
U and V. Therefore, we formulate the objective function of this matrix
factorization problem as follows:

Q(U, V) =
∑
(i,j)∈Ω

(
xi j − uᵀi vj

)2
+ λ1

n∑
i=1

‖ui ‖
2
2 + λ2

m∑
j=1

‖vj ‖
2
2 .

In this ML problem, we essentially try to learn a so-called bilinear function
(see the margin note) to fit all observed elements of X. The objective
function is constructed based on the mean-squared error and the L2 norm
regularization. Because of the nonconvexity introduced by the bilinear
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function, it is not easy to optimize ui and vj jointly. However, the bilinear
function has a nice linear property if we fix either U or V. Therefore, if we
only optimize one variable at a time, it becomes a fairly simple convex
optimization problem. In other words, it is possible to derive a simple
formula to solve ui and vj in an alternating fashion. For example, let us
consider how to solve for one particular vj only, when all ui and other vj′

are assumed to be fixed.

If both U and V are free variables,

X = UᵀV

is a bilinear function, which is a special
form of quadratic function. It is called as
such because it becomes a linear function
when either U or V is fixed.

Figure 7.10: An alternate way to solve ma-
trix factorization [195]: solving only one
column vector in V.

As shown in Figure 7.10, after we collect only the terms related to vj , the
previous optimization problem can be simplified as a ridge regression
problem for vj :

arg min
v j

∑
i∈Ωc

j

(
xi j − uᵀi vj

)2
+ λ2 · ‖vj ‖

2
2 .

Similar to Eq. (7.3), this optimization problem can be solved with the
following closed-form solution:

vj =

( ∑
i∈Ωc

j

uiu
ᵀ
i + λ2 I

)−1 ( ∑
i∈Ωc

j

xi jui

)
.

In the same way, if we assume other vectors are fixed, we can solve for
any particular ui as follows:

ui =

( ∑
j∈Ωr

i

vjv
ᵀ
j + λ1 I

)−1 ( ∑
j∈Ωr

i

xi jvi

)
.

Putting it all together, we have a complete algorithm in Algorithm 7.6 for
factorizing any partially observed matrix X. Note that Algorithm 7.6 can
be run in parallel in a distributed computing system if more processors
are available. At each iteration, we update all ui (or all vj) on different
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processors in parallel. However, each update in Algorithm 7.6 requires us
to invert a k × k matrix, which has the computational complexity of O(k3).
This becomes quite expensive when k is large.

Algorithm 7.6 Alternating Algorithm for Matrix Factorization
set t = 0
randomly initialize v(0)j ( j = 1, 2, · · · , m)
while not converged do

for i = 1, · · · , n do

u(t+1)
i =

( ∑
j∈Ωr

i

v(t)j (v
(t)
j )
ᵀ + λ1 I

)−1 ( ∑
j∈Ωr

i

xi jv
(t)
i

)
end for
for j = 1, · · · , m do

v(t+1)
j =

( ∑
i∈Ωc

j

u(t+1)
i (u(t+1)

i )ᵀ + λ2 I
)−1 ( ∑

i∈Ωc
j

xi ju
(t+1)
j

)
end for
t = t + 1

end while

In the literature, other more efficient algorithms have also been proposed
to solve matrix factorization. For example, a faster algorithm can be de-
rived using stochastic gradient descent (SGD). At each iteration, a random
element xi j (∈ Ω) is selected, and its corresponding ui and vj are updated
separately based on gradient descent. In this case, the gradient for either
ui or vj may be computed in a very efficient way without using matrix
inversion. We leave this as Exercise Q7.6 for interested readers.

7.4 Dictionary Learning

Dictionary learning [202, 157], also known as sparse representation learning, is
a representational learning method for high-dimensional data that exploits
the sparsity property prevalent in most signals that naturally occur in the
physical world. The basic assumption is that all real-world data can be
broken down into many basic elements from a presumably large but
finite dictionary. Each element in the dictionary is called an atom. Even
though this dictionary may contain a large number of atoms, every data
sample can be constructed with only a few atoms from the dictionary.
Every data sample needs to use a different subset of the atoms in the
dictionary, but each subset for any sample is fairly small in size. Moreover,
this assumption is also supported by some empirical successes in the
approach of compressed sensing (also known as sparse sampling) in signal
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Figure 7.11: Sparse coding represents
each data sample as a linear combination
of a dictionary and a sparse code.

processing [39, 67]. For example, there are presumably a large number of
possible objects existing in the world. However, when we take a picture of
any natural scene, we usually only see a few coherent objects appearing
in it. When we take a picture of another natural scene, we may see a few
other objects. Generally speaking, it is unnatural to have a large number
of incoherent objects appearing in the same scene.

In particular, as shown in Figure 7.11, we further assume that each data
sample x (∈ Rd) can be represented as a linear combination of all atoms in
the dictionary D (∈ Rd×n) based on a very sparse code α (∈ Rn), most of
whose elements are 0. We usually use a large dictionary (i.e., n � d). That
is,

x =


| |

d1 · · · dn

| |

d×n

α1

...

αn


= D α,

where each column vector in D (i.e., di ∈ Rd (i = 1, 2, · · · , n)) denotes an
atom in the dictionary. The sparse code α may be used as a feature vector
to represent the original data input x. Moreover, α may be viewed as an
intuitive interpretation for the original data x because it contains only a
few nonzero elements. In practice, the dictionary itself must be learned
jointly with these sparse codes from available training data.

Assume a training set is given as
{
x1, x2, · · · , xN

}
, and we denote the un-

known sparse codes for all of them as
{
α1, α2, · · · , αN

}
. We may represent

all training samples and their sparse codes as a d × N matrix and an n × N
matrix, respectively, as follows:

X =


| |

x1 · · · xN

| |

d×N
A =


| |

α1 · · · αN

| |

n×N
.

Similar to matrix factorization, we formulate dictionary learning as an ML
problem where both D and A are jointly learned from the given training
samples X. In this case, we use the mean-squared error to measure the loss
between each data sample and its sparse code. We also impose L2 norm
regularization on each atom in the dictionary to alleviate overfitting and
L1 norm regularization on each code to promote sparsity. Therefore, the
final optimization problem in dictionary learning can be formulated as
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follows:

arg min
D,A

1
2

N∑
i=1

xi −D αi

2

2
+ λ1

N∑
i=1

αi


1 +

λ2

2

n∑
j=1

dj

2
2︸                                                         ︷︷                                                         ︸

Q(D,A)

. Here, 1
2 is added for notation convenience.

Similar to matrix factorization, we also use a bilinear model in dictionary
learning to combine the dictionary and sparse codes to generate the raw
data. The difference here is that different regularization terms are used,
promoting sparsity in this case.

In the following, we consider a gradient descent algorithm to solve the
optimization problem for dictionary learning. First of all, we can compute
the gradient for each sparse code αi (for all i = 1, 2, · · · , N) as follows:

Note that we may reparameterizexi −Dαi

2

2

=
(
Dαi − xi

)ᵀ (
Dαi − xi

)
.∂Q(D, A)

∂αi
= DᵀDαi −Dᵀxi + λ1 · sgn

(
αi

)
. (7.5)

If we align the left-hand side of this equation as a column to form a
single matrix for all αi , we obtain ∂Q(D,A)

∂A . Similarly, we may pack the
corresponding right-hand sides into another matrix and finally derive:

∂Q(D, A)
∂A

= DᵀDA −DᵀX + λ1 · sgn
(
A

)
,

where sgn(·) applies Eq. (7.2) to a vector or matrix element-wise.

Similarly, we may compute the gradient for D (see margin note) as fol-
lows:

∂Q(D, A)
∂D

= DAAᵀ −XAᵀ + λ2 ·D.

Q(D, A) =

1
2

N∑
i=1

(
Dαi − xi

)ᵀ (Dαi − xi

)
+
λ2

2

n∑
j=1

‖d j ‖
2
2 + · · ·

=⇒
∂Q(D, A)

∂D
=

N∑
i=1

(
Dαi − xi

)
αᵀi

+λ2D

= D
N∑
i=1

αiα
ᵀ
i︸     ︷︷     ︸

AAᵀ

−

N∑
i=1

xiα
ᵀ
i︸    ︷︷    ︸

XAᵀ

+λ2D.

(See Exercise Q2.3.)

Using these computed gradients, we have a complete gradient descent
algorithm to learn the dictionary D from all training data X in Algorithm
7.7.

Once we have learned the dictionary D from the training data as previ-
ously described, for any new datum x that is not in the training set, we
can derive its sparse code α by solving the following optimization:

α∗ = arg min
α

1
2

x −D α
2

2 + λ1 ·
α

1︸                           ︷︷                           ︸
Q′(α)

.

This problem is similar to the LASSO problem in Eq. (7.4), and it can be
solved with the gradient descent or the coordinate descent method as
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Algorithm 7.7 Gradient Descent for Dictionary Learning
set t = 0 and η0
randomly initialize D(0) and A(0)
while not converged do

update A:

A(t+1) = A(t) − ηt
( (

D(t)
)ᵀD(t)A(t) − (

D(t)
)ᵀX + λ1 · sgn

(
A(t)

) )
update D:

D(t+1) = D(t) − ηt
(
D(t)A(t+1) (A(t+1))ᵀ −X

(
A(t+1))ᵀ + λ2 ·D(t)

)
adjust ηt → ηt+1
t = t + 1

end while

described on page 140. Referring to Eq. (7.5), we can compute the gradient
for the previous objective function as follows:

∂Q′(α)
∂α

= DᵀD α −Dᵀx + λ1 · sgn(α).

Finally, the sparse code α∗ can be derived iteratively using any gradient
descent method.
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Lab Project III

In this project, you will use a text corpus, called the English Wikipedia Dump [156, 146], to construct document–
word matrices and then use the LSA technique to factorize the matrices to derive word representations, also
known as word embeddings or word vectors. You will first use the derived word vectors to investigate semantic
similarity between different words based on the Pearson’s correlation coefficient obtained by comparing the
cosine distance between word vectors and human-assigned similarity scores in the WordSim353 data set [62]
(http://www.cse.yorku.ca/~hj/wordsim353_human_scores.txt). Furthermore, the derived word vectors will
be visualized in a two-dimensional (2D) space using the t-distributed stochastic neighbor embedding (t-SNE)
method to inspect the semantic relationship among English words. In this project, you will implement several
ML methods to factorize large, sparse matrices to study how to produce meaningful word representations for
natural language processing.

a. Use the small enwiki8 data set (download from http://www.cse.yorku.ca/~hj/enwiki8.txt.zip) to
construct a document–word frequency matrix like that in Figure 7.7. In this experiment, you should treat
each paragraph in a line as a document. Construct the matrix in a sparse format for the top 10,000 most
frequent words in enwiki8 and all words in WordSim353.

b. First, use a standard SVD procedure from a linear algebra library to factorize the sparse document–word
matrix, and truncate it to k = 20, 50, 100. Examine the run-in time and memory consumption for the SVD.

c. Implement the alternating Algorithm 7.6 to factorize the document–word matrix for k = 20, 50, 100.
Examine the run-in time and memory consumption for this method.

d. Implement the SGD method in Exercise Q7.6 to factorize the document–word matrix for k = 20, 50, 100.
Examine the run-in time and memory consumption.

e. Investigate the quality of the previously derived word vectors based on the correlation with some human-
assigned similarity scores. For each pair of words in WordSim353, compute the cosine distance between
their word vectors, and then compute the Pearson’s correlation coefficient between these cosine distances
and human scores, tuning your learning hyperparameters toward higher correlation.

f. Visualize the previous word representations for the top 300 most frequent words in enwiki8 using the
t-SNE method by projecting each set into a 2D space. Investigate how these 300 word representations are
distributed, and inspect whether the semantically relevant words are located closer in the space. Explain
why or why not.

g. Refer to [240] to reconstruct the document–word matrix based on the positive point-wise mutual informa-
tion (PPMI). Repeat the previous steps to see how much the performance is improved.

h. If you have enough computing resources, optimize your implementations and run the previous steps on a
larger data set, the enwiki9 (http://www.cse.yorku.ca/~hj/enwiki9.txt.zip), to investigate how much
a larger text corpus can improve the quality of the derived word representations.

http://www.cse.yorku.ca/~hj/wordsim353_human_scores.txt
http://www.cse.yorku.ca/~hj/enwiki8.txt.zip
http://www.cse.yorku.ca/~hj/enwiki9.txt.zip
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Exercises

Q7.1 Explain why the loss function is the rectified linear loss H0(x) in perceptron and the sigmoid loss l(x) in
MCE.

Q7.2 Derive the closed-form solution to the ridge regression in Eq. (7.3).

Q7.3 Derive and compare the solutions to the ridge regression for the following two variants:

a. The constrained norm:

min
w

N∑
i=1

(wᵀxi − yi)
2,

subject to
‖w‖22 ≤ 1.

b. The scaled norm:

min
w

[ N∑
i=1

(wᵀxi − yi)
2 + λ · ‖w‖22

]
,

where λ > 0 is a preset constant.

Q7.4 The coordinate descent algorithm aims to optimize the objective function with respect to one free variable
at a time. Derive the coordinate descent algorithm to solve LASSO.

Q7.5 Derive the gradient descent methods to solve the ridge regression and LASSO.

Q7.6 In addition to the alternating Algorithm 7.6, derive the SGD algorithm to solve matrix factorization for
any sparse matrix X. Assume X is huge but very sparse.

Q7.7 Run linear regression, ridge regression, and LASSO on a small data set (e.g., the Boston Housing Dataset;
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to experimentally compare the
regression models obtained from these methods.

https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
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Chapter 6 discussed various methods to learn linear models for machine
learning tasks and also described how to use the kernel trick to extend
them to some specific nonlinear models. Chapter 7 presented a general
framework to learn discriminative models. An interesting question that
follows is how to learn nonlinear discriminative models in a general
way. One natural path for pursuing this idea is to explore high-degree
polynomial functions. However, we usually deal with high-dimensional
feature vectors in most machine learning problems, and multivariate
polynomial functions are known to be seriously plagued by the curse of
dimensionality. As a result, only quadratic functions are occasionally used
under certain settings for some machine learning tasks, such as matrix
factorization and sparse coding. Other higher-order polynomial functions
beyond those are rarely used in machine learning.

On the other hand, artificial neural networks (ANNs), which have been
theoretically shown to represent a rich family of nonlinear models, have
recently been successfully applied to machine learning, particularly su-
pervised learning. ANNs were initially inspired by the biological neuron
networks in animals and humans, but some strong mathematical justi-
fications have also been found to support them in theory. For example,
under some minor conditions, it has been proved that well-structured
and sufficiently large neural networks can approximate, up to any arbi-
trary precision, any function from some well-known function families,
such as continuous functions or Lp functions (see margin note). These
function families are very general and include pretty much all realistic
functions (either linear or nonlinear) that we may encounter in real-world
applications. Moreover, ANNs are so flexible that many structures can
be constructed to accommodate various types of real-world data, such as
static patterns, multidimensional inputs, and sequential data. Under the
support of today’s powerful computing resources, large-scale neural net-
works can be reliably learned from a huge amount of training data to yield
excellent performance for many real-world tasks, ranging from speech
recognition and image classification to machine translation. At present,
neural networks have become the dominant machine learning models for
supervised learning. Under the umbrella of deep learning, many deep and
multilayer structures have been proposed for neural networks in a variety
of practical applications related to speech/music/audio, image/video,
text, and other sensory data.

The function f (x) is called an Lp function
if its p-norm (p > 0) is finite; that is:∫

x
| f (x) |p dx < ∞.

One example is the L2 function space where
p = 2, which is a Hilbert space. It includes
all possible nonlinear functions as long as
they are either energy limited or bounded
and of a finite domain. It is safe to say
that any function arising from a physical
process belongs to L2.
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Figure 8.1: An illustration of a part of a
biological neuronal network.

Figure 8.2: An illustration of a biological
neuron. (Image credit: BruceBlaus/ CC-
BY-3.0.)

Figure 8.3: An artificial neuron: a simple
mathematical model to simulate a biolog-
ical neuron.

This chapter discusses various topics related to ANNs, including basic
formulations, common building blocks for network construction, popular
network structures, the error back-propagation learning algorithm based
on automatic differentiation, and some critical engineering tricks to fine-
tune hyperparameters.

8.1 Artificial Neural Networks

The development of ANNs has been largely inspired by the biological
neuronal networks in animals and humans. In most animals, as well as
humans, the biological neuronal network is enormous and consists of
a huge number of cells called neurons. We believe the huge neuronal
networks in their brains are responsible for their intelligence. How these
large neuronal networks function as a whole still remains mostly unclear
to us, but the behavior of each neuron is well known. As shown in Figure
8.1, each neuron is connected to hundreds or thousands of other neurons
in the network through their axons and dendrites. Most importantly, the
strength of each connection depends on a synapse, which may be adjusted
or learned. Each neuron receives impulse signals from other neurons
through these weighted connections and then combines and processes
them nonlinearly to generate an output signal (either helping or hindering
firing), which will be sent to other connected neurons, as shown in Figure
8.2. What a single biological neuron does is fairly straightforward, but
the whole neuronal network can conduct extremely complex functions
through the collective activities of a huge number of neurons. The overall
function of the whole neuronal network largely depends on how these
neurons are linked and the connection strengths of these links. The key
idea of ANNs is to build mathematical models for computers to simulate
the behavior of a biological neuronal network in order to achieve artificial
intelligence (AI).

8.1.1 Basic Formulation of Artificial Neural Networks

The first step in the simulation is to use a computational model to mimic
each biological neuron in computers. Based on the behavior of biological
neurons described previously, a simple mathematical model has been pro-
posed to simulate it, which is usually called an artificial neuron (or neuron
for short hereafter). As shown in Figure 8.3, each neuron takes multiple
inputs (e.g., x = [x1; x2; · · · ; xm]) and computes a linearly weighted sum
of these inputs using some adjustable parameters (e.g., some weights
w = [w1;w2; · · · ;wm] and a bias b). The sum is passed through a nonlinear
activation function φ(·) to generate the output of this neuron as y. If we
put all of these together, we can represent the computation of each neuron
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as y = φ(wᵀx+ b). If we use the step function in Figure 6.4 as the activation
function, this neuron behaves exactly like the perceptron model discussed
in Section 6.1. The modeling power of a single neuron like this is very
limited because we know that the perceptron model works only for simple
cases such as linearly separable classes. Back in the 1960s, it was already
well known that the modeling power could be significantly enhanced
by combining multiple neurons in certain ways. However, the simple
perceptron algorithm in Algorithm 6.4 cannot be extended for a group of
neurons, and the simple gradient-based optimization methods cannot be
used to learn multiple cascaded neurons because the derivative of the step
function is 0 almost everywhere except the origin. The learning problem of
multiple neurons had not been solved for some time until researchers [249,
204] realized that the step function in neurons could be replaced by some
more amenable nonlinear functions, such as the sigmoid function and the
hyperbolic tangent function (tanh) (as shown in Figure 8.4). The key idea
in this learning algorithm, currently known as back-propagation, is similar
to the trick that replaces the step function with a smoother approxima-
tion, as discussed for the minimum classification error (MCE) in Section
6.3. A differentiable function, such as sigmoid or tanh, is often used to
approximate the step function so that the gradients can be computed for
the parameters of all neurons.

Figure 8.4: Some popular nonlinear acti-
vation functions used for ANNs.

More recently, a new nonlinear activation function y = max(0, x), called
the rectified linear (ReLU) function (see Figure 8.4), has been proposed for
ANNs [111, 168, 82]. The ReLU function is a convex piece-wise linear
function. When the ReLU activation function was initially proposed, it
was quite a surprise because the ReLU function is actually unbounded.
In fact, this is not a problem because the input x is always bounded in
practice, so only the central portion of the ReLU function is relevant.
The advantage of the ReLU activation function is that it normally leads
to much larger gradients than other activation functions. This becomes
extremely important in learning very large and deep neural networks.
As a result, the ReLU function has become the dominant choice for the
nonlinear activation functions in neural networks these days.

After we know how to construct a single neuron, we will be able to build
ANNs by connecting multiple neurons. When doing this, each neuron
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Figure 8.5: Neural networks are primarily
used as a function approximator between
any input x and output y.

Figure 8.6: An illustration of an MLP of
N neurons in the hidden layer.

takes outputs from other neurons or information from the outside world
as its own inputs. Then, it processes all inputs with its own parameters to
generate a single output, which is in turn sent out to another neuron as
another input or the outside world as an overall result. We may follow an
arbitrary structure to connect a large number of neurons to form a very
large neural network. If we view this neural network as a whole, as shown
in Figure 8.5, it can be considered as a multivariate and vector-valued
function that maps the input vector x to output vector y. In the context
of machine learning, the input vectors represent some features related to
an observed pattern, and the outputs represent some target labels of this
pattern.

Before we introduce various possible structures that we can use to system-
atically build large neural networks, one may want to ask a fundamental
question: How powerful could a constructed model potentially become if
it is built by just combining some relatively simple neurons? To answer
this question, we will briefly review some theoretical results regarding
the expressiveness of neural networks, which were developed in the early
1990s. The conclusion is quite striking: we can build a neural network to
approximate any function from some broad function families as long as
we have the resources to use as many neurons as we want and we follow a
meaningful way to connect these neurons. This work is normally referred
to as the universal approximator theory in the literature.

8.1.2 Mathematical Justification: Universal Approximator

The universal approximator theory was initially established by Cybenko
[47] and Hornik [102]. In the original work, they only consider a very
simple structure to combine multiple neurons, which is colloquially re-
ferred to as a multilayer perceptron (MLP), as shown in Figure 8.6. In an
MLP structure, all neurons are aligned in a middle layer (called the hidden
layer), and each neuron takes all inputs from outside and processes them
with its own parameters to generate an output. The overall output of the
MLP is just the sum of the outputs from all neurons. An MLP may be
viewed as a multivariate function y = f (x1, x2, · · · , xm), which depends
on the parameters of all neurons in the hidden layer. A different set of
parameters will result in a different function. Assume we use N neurons in
the hidden layer, so if we vary all possible parameters of these N neurons,
this MLP could represent many different functions. Let us represent all
of these functions as a set, denoted as ΛN . If we use more neurons in
the hidden layer (i.e., N ′ > N), an MLP may be able to represent more
functions, namely, ΛN ⊆ ΛN ′ .

The universal approximator theory states that if we are allowed to use
a large number of neurons in the hidden layer and we select a suitable
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Figure 8.7: An illustration of the nested
structure of function approximators using
MLPs.

common nonlinear activation for all neurons, an MLP can approximate
any function up to arbitrary precision. The following discussion presents
two major results in the universal approximator theory without proof.
The proofs are out of the scope of this book because they require many
techniques from modern analysis. Interested readers may refer to Hornik
[102] and Asadi and Jiang [3] for more details.

Theorem 8.1.1 Denote all continuous functions on Rm as C. If the nonlinear
activation function φ(·) is continuous, bounded, and nonconstant, then ΛN is
dense in C as N →∞ (i.e., limN→∞ ΛN = C).

This theorem applies to the cases where we use sigmoid or tanh as the
activation function for the neurons in the hidden layer. As Theorem 8.1.1
states, as we use more and more neurons in the hidden layer, the MLP
will be able to represent any continuous function on Rm.

Theorem 8.1.2 Denote all Lp functions on Rm as Lp . If the nonlinear activa-
tion function φ(·) is the ReLU function, then ΛN is dense in Lp as N → ∞
(i.e., limN→∞ ΛN = Lp).

Theorem 8.1.2 states that as we use more and more ReLU neurons in the
hidden layer, the MLP will be able to represent any Lp function (p > 1). As
previously mentioned, any function arising from a physical process must
belong to L2 because of the limited-energy constraint. Roughly speaking,
an MLP consisting of a large number of ReLU neurons in the hidden
layer will be able to represent any function we encounter in real-world
applications, regardless of whether it is linear or nonlinear.

A conceptual way to understand the universal approximator theory is
shown in Figure 8.7. If we represent the sets of functions that can be
represented by an MLP using N = 1, 2, · · · neurons in the hidden layer
as Λ1,Λ2, · · · , under some minor conditions (e.g., the parameters of all
neurons are bounded), each of these sets constitutes a subset inside the
whole function space (either C or Lp depending on the choice of the
activation function). These sets form a nested structure because an MLP
can represent more functions after each new neuron is added. As we add
more and more neurons, the modeling power of MLP keeps growing, and
it will eventually occupy the whole function space.

As we have seen, the universal approximator theory only considers a
very simple structure to construct neural networks, namely, the MLP
in Figure 8.6. As we will see later, there are many other structures for
constructing neural networks. Some of those structures include MLP as
a special case, such as deep structures of multiple hidden layers. Some
of them may be viewed as special cases of MLPs, such as convolutional
layers. Generally speaking, the universal approximator theory equally
applies to these well-defined network structures. The key message here
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Figure 8.8: An illustration of a neuron ver-
sus a layer of neurons: a neuron repre-
sents a scalar, and a layer represents a
vector.

Figure 8.9: An illustration of two layers
fully connected through a linear transfor-
mation.

is that well-structured and sufficiently large neural networks are able to
represent any function we are interested in for all real-world problems.
Therefore, ANNs represent a very general class of nonlinear models for
machine learning. The next section introduces some popular network
structures we can use to construct large-scale neural networks.

8.2 Neural Network Structures

In our brains, our biological neuronal networks grow from scratch after we
are born, and the network structures are constantly changing as we learn.
However, we have not found any effective machine learning methods
that can automatically learn a network structure from data. When we
use ANNs, we have to first predetermine the network structure based
on the nature of the data, as well as our domain knowledge. After that,
some powerful learning algorithms are used to learn all parameters in
the neural network to yield a good model for our underlying tasks. This
section presents some common structures for neural networks and the
reasons we may choose each particular structure.

As we have discussed, a neuron is the basic unit for building all neural
networks. Mathematically speaking, each neuron represents a variable
that indicates the status of a hidden unit in the network or an intermediate
result in computation. In practice, we prefer to group multiple neurons
into a larger unit, called a layer, for network construction. As shown in
Figure 8.8, a layer consists of any number of neurons. All neurons in a
layer are normally not interconnected to each other but instead may be
connected to other layers. Mathematically speaking, each layer of neurons
represents a vector in computation. As we will see, all common neural
network structures can be constructed by organizing different layers of
neurons in a certain way. Therefore, in the following, we will treat a layer
of neurons as the basic unit to build all sorts of neural networks.

8.2.1 Basic Building Blocks to Connect Layers

Let us first introduce some basic operations that can be used to connect two
different layers in a neural network. These simple operations constitute
the basic building blocks for any complex neural network.

I Full connection
A straightforward way to connect two layers is to use full linear
connections between them. The output from every neuron in the
first layer is connected to every neuron in the second layer through a
weighted link along with a bias, as shown in Figure 8.9. In this case,
the input to each node in the second layer is a linear combination
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Figure 8.10: An illustration of two layers
that are connected by a convolution sum
using one kernel.

of all outputs from the first layer. The computation in such a full
connection can be represented as the following matrix form:

y =Wx + b,

where W ∈ Rn×d and b ∈ Rn denote all parameters used to make
such a full connection. We need in total n × (d + 1) parameters to
fully connect a layer of d neurons to another layer of n neurons. The
total number of parameters to make a full connection is quadratic to
the size of the layers. The computational complexity of such a full
connection is O(n × d).
As we have seen in the MLP example, the fully connected layers are
particularly suitable in constructing neural networks for universal
function approximation. In practice, instead of using one very large
hidden layer as in the MLP, we can also cascade many narrower
layers through several full-connection operations (of course, each
linear connection is followed by a nonlinear activation function). It
is believed that these cascaded layers require far fewer parameters
than one really wide layer for the same approximation precision.

I Convolution
The convolution sum is a well-known linear operation in digital
signal processing. This operation can also be used to connect two
layers in a neural network [76, 141]. As shown in Figure 8.10, we use
a kernel (a.k.a. filter in signal processing) w ∈ R f to scan through all
positions in the first layer. At each position, an output is computed
by element-wise multiplications and summed:

y1 = w1 · x1 +w2 · x2 +w3 · x3 + · · ·

y2 = w1 · x2 +w2 · x3 +w3 · x4 + · · ·

y3 = w1 · x3 +w2 · x4 +w3 · x5 + · · ·

...

yj =

f∑
i=1

wi × xj+i−1 (∀ j = 1, 2, · · · , n).

For convenience, we may also use a generic notation to represent the
convolution operation as

y = x ∗w (x ∈ Rd , w ∈ R f , y ∈ Rn),

where the kernel w represents the learnable parameters in each
convolution connection.
When we use the convolution operation to connect two layers of
neurons, the number of neurons in the second layer cannot be arbi-
trary. For example, if we have d neurons in the first layer and use a
kernel of f weights, we can easily calculate the number of neurons
in the second layer to be n = d − f + 1. Of course, we can change the
number of outputs of convolution by slightly varying the operation.
For example, when we slide the kernel through the first layer, we
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Figure 8.11: An illustration of two differ-
ent strides (s = 1, 2) in a convolution op-
eration connecting two layers (d = 7 and
f = 3).

Figure 8.12: An illustration of two layers
that are connected by a nonlinear activa-
tion function.

can take a different stride s = 1, 2, · · · , as shown in Figure 8.11. When
a larger stride s > 1 is used, we will get fewer outputs. On the other
hand, we may pad some 0s in both ends of the input layer so that we
can slide the kernel beyond the original ends of the input layer when
the convolution sum is conducted. This will result in more outputs
for the second layer. No matter what, when we use convolution
to connect two layers, the number of neurons in the second layer
must match the setting used for convolution. Moreover, we can see
that the computation complexity in this convolution operation is
O(d × f ).
Compared with full connection, convolution has two unique proper-
ties. First, convolution is suitable for locality modeling. Each output
in the second layer only depends on a local region in the input layer.
When a proper kernel is used, convolution is good at capturing a
certain local feature in the input. On the other hand, in fully con-
nected layers, every output neuron depends on all neurons in the
input layer. Secondly, convolution allows weight sharing among out-
put neurons. Each output neuron is generated with the same set of
weights on different inputs. Because of this, when we connect a layer
of d neurons to another layer of n neurons as in Figure 8.10, we only
need to use a kernel of f weights ( f < d). If we connect the same
layers with a full connection, we need to use n × (d + 1) parameters.
This is a huge saving in model parameters.
Furthermore, we can show that convolution may be viewed as a
special case of full connection, where many of the connections have
0 weights. Alternatively, a full connection can also be viewed as a
convolution using specially chosen kernels. These are left as Exercise
Q8.1.

I Nonlinear activation
As we have seen, each neuron includes a nonlinear activation func-
tion φ(·) as part of its computation. We may apply this activation
function to all neurons in a layer jointly, as shown in Figure 8.12.
In this case, the two layers have the same number of neurons, and
the activation function is applied to each pair as follows: yi = φ(xi)
(∀i = 1, 2, · · · , n). We represent this as a compact vector form:

y = φ(x),

where the activation function φ(·) is applied to the input vector x
element-wise. We may choose ReLU, sigmoid, or tanh for φ(·). No
matter which one we use, there is no learnable parameter in this
activation connection.
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Figure 8.13: An illustration of two layers
that are connected by the softmax func-
tion.

Figure 8.14: An illustration of two layers
that are connected by the max-pooling
function by m.

Figure 8.15: An illustration of two lay-
ers that are connected by a normalization
function with two rescaling parameters γ
and β.

I Softmax
As shown in Eq. (6.18), softmax is a special function that maps an
n-dimensional vector x (x ∈ Rn) into another n-dimensional vector y
inside the hypercube [0, 1]n [36, 35]. Every element in y is a positive
number between [0, 1], and all elements of y sum to 1. Thus, y be-
haves similarly as a discrete probability distribution over n classes.
As shown in Figure 8.13, we use the softmax function to connect two
layers with the same number of neurons. This connection is usually
represented as the following compact vector form:

y = softmax(x).

The softmax connection is usually used as the last layer of a neural
network so that the neural network is made to generate probability-
like outputs. Similar to the activation connection, the connection
using the softmax function does not have any learnable parameters.

Note that in a softmax function y = softmax(x),
for all i = 1, 2, · · · , n, we have

yi =
exi∑n
j=1 e

x j
.

I Max-pooling
Max-pooling is a convenient way to shrink the size of a layer [254]. In
the max-pooling operation by m, a window of m neurons is slid over
the input layer with a stride of m, and the maximum value within
the window is computed as the output at each position. If the input
layer contains n neurons, then the output layer will have n

m neurons,
each of which keeps the maximum value at each window position.
This operation is usually represented as the following vector form:

y = maxpool
/m(x) (x ∈ Rn, y ∈ R

n
m ).

The max-pooling operation does not have any learnable parameters
as well, and the window size m needs to be set as a hyperparameter.
As we can see, the max-pooling operation helps to make the output
less sensitive to small translation variations in input.

I Normalization
In deep neural networks, some normalization operations are intro-
duced to normalize the dynamic ranges of neuron outputs. In a
very deep neural network, the outputs of some neurons may vastly
differ from that of others in a different part of the network if their
inputs flow through very different paths. It is believed that a good
normalization helps to smooth out the loss function of the neural
networks so that it will significantly facilitate the learning of neural
networks. These normalization operations are usually based on some
local statistics as well as a few rescaling parameters to be learned.
Due to the computational efficiency, the local statistics are usually
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accumulated from the current mini-batch because all results for the
current mini-batch are readily available in memory. The most popu-
lar normalization is the so-called batch normalization [108]. As shown
in Figure 8.15, batch normalization will normalize each dimension
xi in an input vector x (∈ Rn) into the corresponding element yi in
the output vector y (∈ Rn) using the following two steps:

Note that µB(i) and σ2
B (i) stand for the

sample mean and the sample variance of
ith dimension xi of input x over the cur-
rent mini-batch B:

µB(i) =
1
|B |

∑
x∈B

xi

σ2
B (i) =

1
|B |

∑
x∈B

(
xi − µB(i)

)2.

A small positive number ε > 0 is used
here to stabilize the cases where the sam-
ple variances become very small.

normalize: x̂i =
xi − µB(i)√
σ2

B (i) + ε
(∀i ∈ {1, 2, · · · n})

rescaling : yi = γi x̂i + βi (∀i ∈ {1, 2, · · · n}),

where µB(i) and σ2
B (i) denote the sample mean and the sample vari-

ance over the current mini-batch, respectively (see margin note), and
γ (∈ Rn) and β (∈ Rn) are two learnable parameter vectors in each
batch-normalization connection. This batch normalization is usually
expressed as the following compact vector form:

y = BNγ,β(x) (x, y ∈ Rn). (8.1)

When very small mini-batches are used in training, the local statistics
estimated from such a small sample set may become unreliable.
To solve this problem, there is a slightly different normalization
operation, called layer normalization [7], where local statistics are
estimated over all dimensions in each input vector x:

µ =
1
n

n∑
i=1

xi σ2 =
1
n

n∑
i=1

(xi − µ)2.

Then µ and σ2 are used in the previously described two-step normal-
ization for the current input x in place of µB(i) and σ2

B(i). The layer
normalization is similarly represented by the following compact
vector form:

y = LNγ,β(x) (x, y ∈ Rn).

As we already discussed, the main reason why we use the normal-
ization connections is to facilitate the learning of neural networks
because these normalization operations can make the loss function
much smoother. In these cases, some larger learning rates may be
used in training, and in turn, the learning will converge much faster.
We will come back to these issues when we discuss the learning
algorithms for neural networks.

Relying on the aforementioned operations to connect various layers,
we can already construct many very powerful feed-forward neural
networks that map each fixed-sized input to another fixed-sized



8.2 Neural Network Structures 161

Figure 8.16: An illustration of how to use
a time-delayed path (in red) to introduce
recurrent feedback in neural networks.

output. The drawback of these networks is that they are usually
memoryless. In other words, the current output solely depends on
the current input. This makes these networks unsuitable for handling
variable-length sequential data because there is no easy way to feed
them to these networks. The following discussion introduces several
common operations that will add memory mechanisms to neural
networks. After these operations are added, a neural network will
be able to memorize historical information so that the current output
depends on not only the current input but also on all inputs in the
previous time instances.

I Time-delayed feedback
A simple strategy to introduce the memory mechanism into neural
networks is to add some time-delayed feedback paths. As shown in
Figure 8.16, a time-delayed path (in red) is used to send the status of
a layer y back to a previous layer (closer to the input end) as a part
of its next input. The time-delayed unit is represented as

yt−1 = z−1(yt ),

where yt and yt−1 denote the values of the layer y at time instances
t and t − 1, and z−1 indicates a time-delay unit, which is physically
implemented as a memory unit storing the current value of y for
the next time instance. At any time instance t, the lower-level layer
x usually takes both yt−1 and the new input to produce its output.
The time-delayed feedback paths introduce cycles into the network.
The neural networks containing such feedback paths are usually
called recurrent neural networks (RNNs). RNNs can remember the past
history because the old information may flow along these cycles over
and over. We know recurrent feedbacks are abundant in biological
neuronal networks as one of the major mechanisms for short-term
memory. However, these feedback paths impose some significant
challenges in the learning of ANNs. RNNs are discussed in detail on
page 170.

I Tapped delay line
Another possible way to introduce memory mechanisms into neural
networks without using any recurrent feedback is to use a structure
called a tapped delay line [246, 262, 265], which is essentially a number
of synchronized memory units aligned in a line. As shown in Figure
8.17, these memory units are synchronized to store the values of
the layer y at all previous time instances (i.e., {yt , yt−1, yt−2, · · · }).
At the next time instance t + 1, all values saved in these memory
units are shifted right by 1 unit. The number of the saved historical
values depends on the length of the tapped delay line, that is, the
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Figure 8.17: An illustration of nonrecur-
rent memory module using a tapped-
delay-line structure (in red), where ẑt and
z are concatenated to feed to the next
layer.

total number of memory units in the line. In some cases, we can
use a large number of memory units to store all historical values
in an input sequence. At each time instance t, all stored values in
the tapped delay line are linearly combined through some learnable
parameters (i.e., {a0, a1, a2, · · · }) to generate a new layer of outputs,
denoted as ẑt :

ẑt =
L−1∑
i=0

ai ⊗ yt−i ,

where L denotes the length of the tapped delay line. Here, each of
the learnable parameters, ai , may be chosen as a scalar, vector, or
matrix. If ai is a scalar, ⊗ stands for multiplication; if ai is a vector, ⊗
stands for element-wise multiplication between two vectors; if ai is
a matrix, ⊗ stands for matrix multiplication. An important aspect of
this structure is that the generated vector ẑt will be sent to the next
layer (closer to the output end) so that it will not introduce any cycle
into the network. The overall network remains as a nonrecurrent
feed-forward structure, but it possesses strong memory capability
as a result of the introduced memory units in the tapped delay line.
The learning algorithm for these network structures is the same as
that of other feed-forward networks.
As another note is that if we are allowed to delay the decision at time
t to t + L ′, the tapped delay line can even look ahead. In this case,
when the decision for time t is made, the tapped delay line already
stores all values of y from time t − L to t + L ′. The future information
in the look-ahead window [t + 1, t + L ′] is also incorporated into the
output vector ẑt .

I Attention
In the tapped-delay-line structure, the coefficients {a0, a1, a2, · · · } are
all learnable parameters. Once these parameters are learned, they
remain constant, just like other network parameters. The attention
mechanism aims to dynamically adjust these coefficients to select the
most prominent features from all saved historical information based
on the current input condition from outside and/or the present in-
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ternal status of the network. An attention mechanism is critical in
modeling long-span dependency in very long sequences [8]. The
long-span dependency is widespread in natural language. For exam-
ple, the interpretation of a word may depend on another word or
phrase located far away in the context.

Figure 8.18: An illustration of the atten-
tion mechanism (in red) in neural net-
works, where time-variant coefficients
{a0(t), a1(t), · · · } are used to combine all
saved historical values {yt , yt−1, · · · } to
generate ẑt at each time t.

The attention mechanism is usually implemented using a special
tapped-delay-line structure, as shown in Figure 8.18, where we use
time-variant scalar coefficients {a0(t), a1(t), · · · } to combine all saved
historical values {yt , yt−1, · · · }. These time-variant scalar coefficients
are dynamically computed by an attention function g(·) at each time
instance t, which will take the current input condition from out-
side and the present internal status of the network as two inputs to
generate a set of scalars, as follows:

The attention function g(qt , kt ) ∈ RL

takes two vectors as input and generates
an L-dimensional vector as output.ct

∆
=

[
c0(t) c1(t) · · · cL−1(t)

]ᵀ
= g(qt , kt ),

where the two vectors qt and kt denote the current input condition
and the internal system status at time t, which are sometimes called
the query qt ∈ Rl and the key kt ∈ Rl . Next, these outputs from the
attention function are usually normalized by the softmax function to
ensure all attention coefficients are positive and summed to 1:

at
∆
=

[
a0(t) a1(t) · · · aL−1(t)

]ᵀ
= softmax(ct ).

At each time t, the attention module generates the output ẑt as
In short, the attention mechanism can be
viewed as a dynamic way to generate
time-variant coefficients in the tapped de-
lay line for each t as follows:

at = softmax
(
g(qt , kt )

)
.

ẑt =
L−1∑
i=0

ai(t)yt−i =
[
yt yt−1 · · · yt−L+1

]
at .

This attention mechanism is pretty flexible because we can choose
a different attention function g(·) and also select different vectors
as the query and key for various modeling purposes. Similarly, the
look-ahead window can be used here to make sure that the attention
mechanism can select features not just from the past but also from
the future. If we have enough resources to make the tapped delay
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line very long, for any input sequence of total T items, we can store
all y ∈ Rn of the sequence as a large matrix:

V =
[
yT yT−1 · · · y1

]
n×T

where this matrix V is sometimes called a value matrix. In this case,
at any time t, the attention mechanism is conducted over all saved
values in V:

ẑt = V
[
softmax

(
g(qt , kt )

) ]
T×1

(∀t ∈ 1, 2, · · · , T). (8.2)

Furthermore, if the query qt and key kt are chosen in such a way
that they do not depend on any attention outputs ẑt , all queries qt

and keys kt (∀t ∈ 1, 2, · · · , T) can be computed ahead of time and
packed into two matrices as follows:

Q ∆
=

[
qT qT−1 · · · q1

]
l×T

K ∆
=

[
kT kT−1 · · · k1

]
l×T

where Q and K are normally called the query and key matrices. There-
fore, the attention operations for all time instances t = 1, 2, · · · , T can
be represented as the following compact matrix form:

Ẑ = V softmax
(
g(Q, K)

)
, (8.3)

where Ẑ ∆
=

[
ẑT · · · ẑ2 ẑ1

]
and the softmax function is applied to

g(Q, K) (∈ RT×T ) column-wise.

In this context, the attention function g(·)

takes two matrices as input and generates
a T × T matrix as output. Each column
of the output matrix is computed as pre-
viously based on one column from each
input matrix (i.e., g(qt , kt )).

Therefore, the attention mechanism represents a very flexible and
complex computation in neural networks, and it depends on how
we choose the following four elements:

1. Attention function g(·)

2. Value matrix V
3. Query matrix Q
4. Key matrix K

Unlike other introduced operations that are used to link only two
layers of neurons, the attention mechanism involves many layers in
a network. The attention mechanism plays an important role in a
popular neural network structure recently proposed to handle long
text sequences, called transformers [244], to be introduced later on
page 172.

Now that we have covered the most basic building blocks that we can use
to connect layers of neurons to construct various architectures for large
neural networks, the next sections present several popular neural network
models as our case studies. In particular, we will explore the traditional
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fully connected deep neural networks, convolutional neural networks,
recurrent neural networks, and the more recent transformers.

8.2.2 Case Study I: Fully Connected Deep Neural
Networks

Fully connected deep neural networks are the most traditional architecture
for deep learning, which usually consist of one input layer at the beginning,
one output layer at the end, and any number of hidden layers in between.
As shown in Figure 8.19, these feed-forward networks are memoryless,
and they take a fixed-size vector as input and sequentially process the
input through several fully connected hidden layers until the final output
is generated from the output layer.

Figure 8.19: An illustration of a fully con-
nected neural network consisting of L − 1
hidden layers and one softmax output
layer.

The input layer simply takes an input vector x and sends it to the first
hidden layer. Each hidden layer is essentially composed of two sublayers,
which we name as the linear sublayer and the nonlinear sublayer, denoted
as al and zl for the lth hidden layer. As shown in Figure 8.19, the linear
sublayer al is connected to the previous nonlinear sublayer zl−1 through a
full connection:

al =W(l)zl−1 + b(l) (∀l = 1, 2, · · · , L − 1),

where W(l) and b(l) denote the weight matrix and the bias vector of the
full connection in the lth hidden layer, respectively. On the other hand,
the linear sublayer al is connected to zl through a nonlinear activation
operation. If we use ReLU as the activation function φ(·) for all hidden
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layers, then we have

zl = ReLU(al) (∀l = 1, 2, · · · , L − 1).

Many hidden layers can be cascaded in this way to form a deep neu-
ral network. Finally, the last layer is the output layer that generates the
final output y for this deep neural network. If the network is used for
classification, the output layer usually uses the softmax function to yield
probability-like outputs for all different classes. Therefore, the output layer
can also be broken down into two sublayers (i.e., aL and zL). Here, aL is
connected to the previous zL−1 through a full connection in the same way
as previously:

aL =W(L)zL−1 + b(L),

but aL is connected to zL , being equal to the final output of the whole
network, through a softmax operation as follows:

y = zL = softmax(aL).

Finally, let us summarize the entire forward pass for the fully connected
deep neural network as follows:

Forward Pass of Fully Connected Deep Neural Networks

Given any input x, it generates the output y as follows:

1. For the input layer: z0 = x
2. For each hidden layer l = 1, 2, · · · , L − 1:

al =W(l)zl−1 + b(l)

zl = ReLU(al)

3. For the output layer:

aL =W(L)zL−1 + b(L)

y = zL = softmax(aL)

8.2.3 Case Study II: Convolutional Neural Networks

Another popular architecture for neural networks is the so-called convolu-
tional neural networks (CNNs). At present, CNNs are the dominant machine
learning models to handle visual data, such as images and videos. CNNs
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Figure 8.20: An illustration of the 1D con-
volution sum involving multiple input
feature plies.

are also periodically applied to many other applications involving se-
quential data, such as speech, audio, and text. Conceptually speaking,
CNNs take advantage of the basic idea behind the convolution sum to
perform locality modeling over high-dimensional data. Compared with
fully connected neural networks, the convolution operation forces CNNs
to focus more on the local features in high-dimensional data, which is
more akin to human perception. The aforementioned one-dimensional
(1D) convolution connection by itself is too simple and needs to be signifi-
cantly expanded along several dimensions to be able to handle real-world
data. The following list introduces four major extensions on top of the
simple 1D convolution sum and shows how these extensions eventually
lead to the popular CNN structures.

I Extension 1: allow multiple feature plies in input
In the simple 1D convolution sum shown in Figure 8.10, we assume
there is only one feature at each input location. However, many
real-world data may contain multiple features at each position. For
example, each pixel in a color image is represented by three values
(R/G/B). Therefore, we can extend the previous setting to allow
multiple features at each input location. These different features
form multiple plies (a.k.a. maps) in the input. As shown in Figure
8.20, if we assume the input x contains p feature plies, the input
data become a p × d matrix. In order to handle the multiple plies in
input, we also need to extend the kernel into a p × f matrix. When
we conduct the convolution sum, we still slide the kernel w over
the input x. At each position, the kernel w covers a p × f chunk of
the input, and an output is still computed by element-wise multi-
plication and summation. By default, the total number of outputs is
n = d − f + 1. Similarly, we may change the number of outputs by
varying the stride and zero-padding settings. This convolution can
be represented as follows:

yj =

p∑
k=1

f∑
i=1

wi,k × xj+i−1,k (∀ j = 1, 2, · · · , n).

We also use the following generic matrix notation to represent this
convolution:

y = x ∗w (x ∈ Rd×p , w ∈ R f×p , y ∈ Rn).

We can calculate that the computational complexity of this convo-
lution is O(d · f · p). The number of parameters we need to connect
input and output is p × f . The kernel still focuses on local features
along the input dimension, but the local features are computed over
all feature plies.
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Figure 8.21: An illustration of the 1D con-
volution sum involving multiple input
feature plies and multiple kernels.

I Extension 2: allow multiple kernels
If all parameters of the kernel are set properly, the kernel can capture
only one particular local feature in the input. If we are interested
in capturing multiple local features in the input, we can extend the
model to use multiple kernels in the convolution. As shown in Figure
8.21, each kernel is slid over the input maps to generate a sequence of
outputs. Assuming we use k different kernels, we will end up with k
different output sequences, each of which contains n values as before.
This k × n output is sometimes called the feature map. Meanwhile, all
k kernels may be represented as an f × p × k tensor. In this case, the
convolution is computed as follows:

yj1,j2 =

p∑
i2=1

f∑
i1=1

wi1,i2,j2 × xj1+i1−1,i2 (∀ j1 = 1, · · · , n; j2 = 1, · · · , k).

Similarly, this convolution may be represented by the following
compact form:

y = x ∗w (x ∈ Rd×p , w ∈ R f×p×k , y ∈ Rn×k ).

The computational complexity of this convolution is O(d · f · p · k).
The total number of parameters increases to f × p × k.

I Extension 3: allow multiple input dimensions
In the previous discussions, we always assume the input x is a 1D
signal from 1 to d. Of course, we may expand the input dimension
to handle multidimensional data, such as images (two-dimensional
[2D]) and videos (three-dimensional [3D]). Here, let us consider how
to extend the input x from 1D to 2D. In this case, the input x becomes
a d × d × p tensor, as shown in Figure 8.22. We also have to extend
each kernel into an f × f × p tensor. As shown in Figure 8.22, when
we convolve the kernel with the input, we slide the kernel over
the entire 2D space. At each position, an output is generated by the
similar element-wise multiplication and summation. The result of the
convolution using one kernel is an n × n map. If we have k different
kernels, all of these kernels can be represented as an f × f × p × k
tensor, and the output of the convolution becomes an n× n× k tensor,
accordingly. This 2D convolution is exactly computed as follows:

yj1,j2,j3 =

p∑
i3=1

f∑
i2=1

f∑
i1=1

wi1,i2,i3,j3 × xj1+i1−1,j2+i2−1,i3 (8.4)

( j1 = 1, · · · , n; j2 = 1, · · · , n; j3 = 1, · · · , k).

Similarly, we represent this 2D convolution as the following compact



8.2 Neural Network Structures 169

Figure 8.22: An illustration of 2D convo-
lution involving one kernel over multiple
input feature plies. (Source: [208].)

tensor form:

y = x ∗w (x ∈ Rd×d×p , w ∈ R f× f×p×k , y ∈ Rn×n×k ). (8.5)

The computational complexity of this convolution is O(d2 · f 2 · p · k),
and the total number of parameters is f 2 × p × k. The property of
locality modeling is still applicable to the 2D convolution, but in this
case, the 2D local features are actually captured and modeled.

I Extension 4: stack many convolution layers
The final step in constructing a typical CNN is to stack many con-
volutional layers, as described previously, to form a deep structure.
Because convolution is a linear operation, each convolution layer is
normally followed by a nonlinear ReLU layer before it is cascaded
to the next convolution layer. By doing so, we can significantly in-
crease the modeling power after many such layers are stacked. Note
that a composition of two linear functions is still a linear function.
Sometimes we also insert max-pooling layers in between to reduce
the size of the maps to be passed to the following layers. A typical
CNN structure for image classification is shown in Figure 8.23.
At each convolution layer, the input/kernel/output tensors must
match with each other in their sizes based on the definition of the 2D
convolution operation in Eq. (8.5). When we stack many convolution
layers like this, each layer conducts locality modeling on the output
of the previous layer. The hierarchical structure of many convolution
layers recursively combines the local features extracted at each level
to form higher-level features. This makes sense when handling visual
data such as images: the low-level convolution kernels first consider
small local regions to extract low-level features based on nearby
pixels of an image, and the high-level convolution layers will try to
locally combine these smaller local features to consider much larger
regions in the image.

Figure 8.23: An illustration of a typical
CNN consisting of convolution layers,
ReLU layers, max-pooling layers, and
fully connected layers.
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Figure 8.24: An illustration of receptive
fields in CNNs.

Figure 8.25: An illustration of a simple
RNN structure.

As shown in Figure 8.24, each location of an output feature map from
a convolution layer is locally computed based on a small region in
the previous layer. If we keep tracking this backward to the original
input image, we will identify a local region of the image that con-
tributes to the computation of this location. This local region in the
input is usually called the receptive field of this feature map. As we
can see, the receptive fields get larger and larger as we move to the
higher layers in the hierarchy of a CNN.
As shown in Figure 8.23, several fully connected layers and a softmax
layer are usually added at the top of this hierarchy to map the locally
extracted features to the final image labels. The entire CNN structure
may be broken down into two parts:

1. The stacked convolution layers responsible for visual feature
extraction

2. The fully connected layers as a universal function approximator
to map these features to the target labels

Now that we have covered two feed-forward neural network structures
for fixed-size input data, in the following, we will examine two popular
structures that are suitable for handling variable-length sequences. The
first structure is based on recurrent feedback and is called a recurrent
neural network (RNN). We will briefly examine a standard structure for
RNNs. The second structure, called a transformer, relies on nonrecurrent
structures using the attention mechanism. As we will see, transformers are
very expensive in computational complexity and memory consumption
but are good at capturing long-span dependency in long sequences.

8.2.4 Case Study III: Recurrent Neural Networks (RNNs)

As already mentioned, RNNs are neural networks that contain recurrent
feedback that typically results in some cycles in the network. Figure 8.25
shows a simple recurrent structure for RNNs that was proposed early
on and has been extensively studied in the literature. This simple RNN
contains only one hidden layer that uses tanh(·) as the nonlinear activation
function. The activation function tanh(·) is used here because it generates
both positive and negative values between [−1, 1], whereas ReLU and
sigmoid generate only nonnegative outputs. The time-delayed feedback
path stores the current value of the hidden layer h at each time, which
will then be sent back to the input layer to concatenate with a new input
arriving at the next time instance. By doing this, historical information
will flow over and over and persist in the network.

If this RNN is used to process the following sequence of input vectors:

{x1, x2, · · · , xT },
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and we assume that the initial status of the hidden layer is h0, the RNN
will operate for t = 1, 2, · · ·T as follows: Here, [xt ; ht−1

]
denotes that two column

vectors (i.e., xt and ht−1) are concatenated
into a longer column vector.at =W1

[
xt ; ht−1

]
+ b1

ht = tanh(at )

yt =W2ht + b2,

where W1, b1, W2, and b2 denote the parameters used in the two full
connections of the RNN.

Figure 8.26: Unfolding an RNN into a
nonrecurrent structure.

A convenient way to analyze the behavior of the recurrent feedback in
an RNN is to unfold the recursive computation along the time steps
for the whole input sequence. For example, if we unfold the feedback
along time, the recursive computation is equivalent to the nonrecurrent
network shown in Figure 8.26. By doing this, any RNN may be viewed as
duplicating the same nonrecurrent network for every time instance, each
passing a message to its successor (as shown in red in Figure 8.26). If the
RNN is used to process a long input sequence, this nonrecurrent network
becomes a very deep structure. Just consider the path from the first input
x1 to the last output yT if T is large. Theoretically speaking, RNNs are
very powerful models suitable for all sequences. However, in practice, the
learning of RNNs turns out to be extremely difficult because of the deep
structure introduced by the recurrent feedback. Empirical results have
shown that simple RNN structures, such as that shown in Figure 8.25, are
only good at modeling short-term dependency in sequences but fail to
capture any dependency that spans a long distance in input sequences.
To solve this issue, many structure variations have been proposed for
RNNs, such as long short-term memory (LSTM) [101, 177], gated recurrent
units (GRUs) [43], and higher-order recurrent neural networks (HORNNs)
[228, 95]. The basic idea in these methods is to introduce some shortcut
paths in the deep structures in various ways so that the signals can flow
more smoothly in the deep networks, which will significantly improve
the learning of RNNs. Another possible way to enhance RNNs is to use
the so-called bidirectional recurrent neural networks [217], where each output
is computed based on both the left and right sides of the context in a
sequence. Interested readers may refer to the original articles for those
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improved recurrent structures.

8.2.5 Case Study IV: Transformer

As previously discussed, RNNs were originally designed to handle se-
quences in a sequential way, taking one input item at a time and generating
an output item based on the current input and internal status. By doing
this recursively from beginning to end, RNNs are able to map any input
sequence into an output sequence. However, if we unfold an RNN, as
shown in Figure 8.26, we may view this unfolded network as a single
nonrecurrent structure that transforms an input sequence {x1, x2, · · · , xT }
into another output sequence {y1, y2, · · · , yT } as a whole. This observation
suggests that we may actually construct this nonrecurrent structure using
any building blocks, such as the tapped delay line or the attention mech-
anism, rather than just unfolding an RNN. The limitation of an RNN is
evident from its unfolded structure in Figure 8.26: when the RNN com-
putes the output yt at time step t, xt needs to flow through one copy of
the subnetwork, xt−1 through two copies, xt−3 through three copies, and
so on. The contribution from far-back history decays significantly because
it needs to flow through a long path to reach the current output.

On the other hand, if we use the attention mechanism in Eq. (8.2) to
compute the output yt , the relation with all historical information or even
future information can be any way we prefer, depending on how we
choose the attention function g(·), the query qt , and the key kt to compute
the attention coefficients. From this perspective, attention is a better way
to capture long-span dependency in sequences.

In the following, we will explore a popular network structure designed
with this idea in mind. This network structure, called the transformer
[244], relies on the attention mechanism discussed in Eq. (8.3) as its main
building block. The transformer is a very powerful model that relies on the
so-called self-attention mechanism to transform any input sequence into a
context-aware output sequence that can encode long-span dependencies.
The reason it is called self-attention is that the transformer adopts a special
structure for the attention mechanism in Eq. (8.3), where the three matrices
V, Q, and K are all derived from the same input sequence. The transformer
is a very popular machine learning model for long text documents, and
it has demonstrated tremendous successes in a wide range of natural-
language-processing tasks.

Let us assume each vector in the input sequence is a d-dimension vector:
xt ∈ Rd (∀t = 1, 2, · · · , T). We align all input vectors to form the following
d ×T matrix:

X =
[
xT · · · x2 x1

]
.
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Next, we define three matrices A ∈ Rl×d , B ∈ Rl×d , and C ∈ Ro×d to be
the learnable parameters of the transformer. These three matrices will be
used as three linear transformations to transform the input sequence X
into query matrix Q, key matrix K, and value matrix V:

Q = AX K = BX V = CX,

where Q, K ∈ Rl×T , and V ∈ Ro×T . We further define the attention function
as the following bilinear function:

g(Q, K) = QᵀK,

where g(Q, K) ∈ RT×T .

Under this setting, we simply use the attention formula in Eq. (8.3) to
transform X into another matrix Z ∈ Ro×T , as follows:

Z =
(
CX

)
softmax

( (
AX

)ᵀ (BX
) )

,

where the softmax function is applied to each column to ensure all entries
are positive and each column sums to 1. The process of self-attention is
also depicted in Figure 8.27.

Figure 8.27: An illustration of the com-
putation flowchart of a single-head trans-
former.

Moreover, the transformer can be further empowered by using multiple
sets of parameters A, B, and C. Each set is called a head of the transformer.
The outputs Z from all heads are concatenated and then sent to a nonlinear
module, consisting of a fully connected layer and a ReLU activation layer,
to generate the final output of the multihead transformer. In Vaswani et
al. [244], all dimensions of these matrices are chosen carefully to ensure
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that the final output has the same size as the input X. In this way, many
such multihead transformers can be easily stacked one after another to
construct a deep model, which can flexibly transform any input sequence
into another context-aware output sequence.

The following box briefly summarizes how such a multihead transformer
works:

Multihead Transformer

Choose d = 512, o = 64, a multihead transformer will trans-
form an input sequence X ∈ R512×T into Y ∈ Rn×T :

I Multihead transformer: use eight sets of parameters:

A(j), B(j) ∈ Rl×512, C(j) ∈ R64×512 ( j = 1, 2, · · · , 8).

I For j = 1, 2, · · · , 8:

Z(j) ∈ R64×T =
(
C(j)X

)
softmax

( (
A(j)X

)ᵀ (B(j)X) )
.

I Concatenate all heads:

Z ∈ R512×T = concat
(
Z(1), Z(2), · · · , Z(8)

)
.

I Apply nonlinearity:

Y = feedforward
(
LNγ,β

(
X +Z

) )
.

Note that we use

Y = feed-forward(X)

as a shorthand for a fully connected neu-
ral network of one hidden layer. Here,
we send each column of X, denoted as xt ,
through a full connection layer of param-
eters W and b and then a ReLU nonlinear
layer:

yt = ReLU
(
Wxt + b

)
.

And all outputs are concatenated as fol-
lows:

Y =
[
y1 y2 · · · yT

]
. From this description, we can easily see that the transformer is an ex-

tremely expensive model in terms of computational complexity because it
involves multiplications of several large matrices at each step. Moreover, it
also requires a fairly large memory space to store these matrices and other
intermediate results. The estimation of the computational complexity of
the multihead transformer is left to Exercise Q8.9.

8.3 Learning Algorithms for Neural Networks

So far, we have thoroughly discussed how to construct various neural
network structures, and we also know how to compute network outputs
from any inputs, provided all network parameters are given. Now, we will
discuss how to learn these network parameters. Once a network’s structure
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is determined, using W to denote all parameters, a neural network can be
viewed as a multivariate and vector-valued function as follows:

y = f (x; W).

Just like other discriminative models, the neural network parameters
W must be learned from a training set, which usually consists of many
input–output pairs, as follows:

DN =
{
(x1, r1), (x2, r2), · · · , (xN , rN )

}
,

where each xi denotes an input sample, and ri is its correct label.

8.3.1 Loss Function

First, let us explore some common loss functions that can be used to
construct the objective function for learning neural networks.

If a neural network is used for any regression problem, the best loss
function is the mean-square error (MSE). In this case, the objective function
can be easily formed as follows:

QMSE(W; DN ) =

N∑
i=1

‖ f (xi ; W) − ri ‖2.

Next, let us consider the cases where a neural network is used for pattern-
classification problems. In a classification problem, we normally assume
all different classes (assuming K classes in total) are mutually exclusive.
In other words, any input can only be assigned to one of these classes.

If the underlying classes in a classification
problem are not mutually exclusive, they
can always be broken down to some sepa-
rate classification problems. For example,
say we want to recognize whether an im-
age contains a cat or a dog. Obviously, it is
possible to have some images containing
both cats and dogs. This problem can be
formulated as two separate binary clas-
sification problems, namely, "whether an
image contains a cat? (yes/no)" and "whether
an image contains a dog? (yes/no)." The out-
put layer of the neural network can be
reconfigured to accommodate both prob-
lems at the same time. This is left as Exer-
cise Q8.2.

For mutually exclusive classes, we usually use the so-called 1-of-K one-
hot strategy to encode the correct label for each training sample xi . Its
corresponding label ri is a K-dimension vector, containing all 0s but a
single 1 in the position corresponding to the correct class. We use a scalar
ri to indicate the position of 1 in ri , where ri ∈ {1, 2, · · · , K}.

For mutually exclusive classes, we normally use a softmax output layer in
neural networks to yield probability-like outputs. Meanwhile, each one-
hot encoding label ri can be viewed as the desired probability distribution
over all classes: the correct class is 1, and everything else is 0.

In this case, we use the Kullback–Leibler (KL) divergence between ri and
the neural network output yi = f (xi ; W) to measure the loss for each data
sample xi , usually called the cross-entropy (CE) error. Because ri is a one-hot
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Figure 8.28: An illustration of a module
in neural networks representing a simple
function.

vector containing only one 1 at position ri , we have

QCE(W; DN ) = −

N∑
i=1

ln
[
yi

]
ri
= −

N∑
i=1

ln
[

f (xi ; W)
]
ri

(8.6)

where [·]r denotes the rth element of a vector.

It is easy to verify:

KL
(
{ri } | | {yi }

)
= − ln

[
yi

]
ri

.

8.3.2 Automatic Differentiation

If we want to learn the network parameters W by optimizing the objec-
tive function Q(W), we need to know how to compute the gradient of
the objective function (i.e., ∂Q(W)∂W

). This section introduces the automatic
differentiation (AD) technique [145], which is guaranteed to compute the
gradient in the most efficient way for any network structure. This tech-
nique also leads to the famous error back-propagation algorithm for neural
networks [249, 204]. The key idea behind automatic differentiation is the
simple chain rule in calculus. Any neural network can be viewed as a
composition of many simpler functions, each of which is represented by
a smaller network module. AD essentially passes some key "messages"
along the network so that all gradients can be computed locally from these
messages. AD has two different accumulation modes: forward and reverse.
In the following, we will explore how to use the reverse-accumulation
mode to compute the gradients for neural networks, which is colloquially
called the error back-propagation algorithm.

First of all, let us use a simple example to show the essence of the reverse-
accumulation mode in AD. As shown in Figure 8.28, assume that we
have a module in a neural network, which represents a function y = fw(x)
that takes x ∈ R as input and generates y ∈ R as output. All learnable
parameters inside this module are denoted as w. For any objective function
Q(·), suppose we already know its partial derivative with respect to the
immediate output of this module, which is usually called the error signal
of this module, denoted as e = ∂Q

∂y . According to the chain rule, we can
easily compute the gradient of all learnable parameters in this module as
follows:

∂Q
∂w
=
∂Q
∂y

∂y

∂w
= e

∂ fw(x)
∂w

,

where ∂ fw(x)
∂w can be computed locally based on the function itself. In

other words, as long as we know the error signal of this module, the
gradient of all learnable parameters of this module can be computed
locally, independent of other parts of the neural network. In order to
generate error signals for all modules in a network, we have to propagate
it in a certain way. From the perspective of this module, we at least have
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Figure 8.29: An illustration of a module
in neural networks representing a vector-
input and vector-output function.

to propagate it from the output end to the input end, to be used as the
error signal for the module immediately before. In other words, we need
to derive the partial derivative with respect to (w.r.t.) the input of this
module (i.e., ∂Q

∂x ). We will continue this process until we reach the first
module of the whole network. Once again, according to the chain rule, the
propagation of the error signal from the output end to the input end is
another simple task that can be done locally:

∂Q
∂x
=
∂Q
∂y

∂y

∂x
= e

dfw(x)
dx

,

where d fw(x)
dx can be computed solely from the function itself.

This idea can be extended to a more general case, where the underlying
module represents a vector-input and vector-output function (i.e., y =
fw(x) (x ∈ Rm and y ∈ Rn)), as shown in Figure 8.29. In this case, the two
local derivatives are represented by two Jacobian matrices, Jw and Jx, as
follows:

Jw =



∂y1
∂w1

∂y2
∂w1

· · ·
∂yn
∂w1

∂y1
∂w2

∂y2
∂w2

· · ·
∂yn
∂w2

...
...

...
...

∂y1
∂wk

∂y2
∂wk

· · ·
∂yn
∂wk

k×n
=

[
∂yj

∂wi

]
k×n

where yj denotes jth element of the output vector y, wi denotes the ith
element of the parameter vector w (∈ Rk ), and

y =



y1

y2

...

yn


x =



x1

x2

...

xm


w =



w1

w2

...

wk


Jx =



∂y1
∂x1

∂y2
∂x1

· · ·
∂yn
∂x1

∂y1
∂x2

∂y2
∂x2

· · ·
∂yn
∂x2

...
...

...
...

∂y1
∂xm

∂y2
∂xm

· · ·
∂yn
∂xm

m×n
=

[
∂yj

∂xi

]
m×n

where xi denotes ith element of the input vector x.

These two Jacobian matrices can be both computed locally based on this
network module alone. Once again, assume we already know the error
signal of this module, which is similarly defined as the partial derivatives
of the objective function Q(·)w.r.t. the immediate output of this module.
In this case, the error signal is a vector because this module generates a
vector output:

e ∆=
∂Q
∂y

(e ∈ Rn).
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Similarly, we may perform the two steps required by the reverse accumu-
lation of AD as two simple matrix multiplications:

1. Back-propagation:
∂Q
∂x
= Jx e. (8.7)

2. Local gradients:
∂Q
∂w
= Jw e. (8.8)

Now, let us consider how to perform these two steps for the common
building blocks of neural networks that we have discussed previously.

I Full connection
As shown in Figure 8.9, full connection is a linear transformation
that connects input x ∈ Rd to output y ∈ Rn as y = Wx + b, where
W ∈ Rn×d , and b ∈ Rn. Assume that we have the error signal of
this module (i.e., e = ∂Q

∂y ). Let us consider how to conduct back-
propagation and compute local gradients for this module.
First, because we have y =Wx + b, it is easy to derive the following
Jacobian matrix:

Jx =

[
∂yj

∂xi

]
d×n

=Wᵀ.

Therefore, we have the following formula to back-propagate the
error signal to the input end:

∂Q
∂x
=Wᵀe. (8.9)

Second, if we use wᵀi to denote the ith row of the weight matrix
W and bi for the ith element of the bias b, we have yi = wᵀi x + bi .
Furthermore, wi and bi are not related to any other elements in y
except yi .
Therefore, for any i ∈ {1, 2, · · · , n}, we have

∂Q
∂wi

=
∂Q
∂yi

∂yi
∂wi

= x
∂Q
∂yi

,

and
∂Q
∂bi
=
∂Q
∂yi

∂yi
∂bi
=
∂Q
∂yi

.

We may arrange these results for all i into the following compact
matrix form to compute the local gradients of all parameters for the
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full-connection module:
For each row vector of W, we have

∂Q

∂wᵀi
=
∂Q

∂yi
xᵀ.

∂Q
∂W
=


∂Q
∂y1
...
∂Q
∂yn


xᵀ = e xᵀ. (8.10)

∂Q
∂b
= e. (8.11)

I Nonlinear activation
As shown in Figure 8.12, a nonlinear activation is an operation to
connect x (∈ Rn) to y (∈ Rn) as y = φ(x), where the nonlinear acti-
vation function φ(·) is applied to the input vector x element-wise:
yi = φ(xi) (∀i = 1, 2, · · · , n).
Because there are no learnable parameters in the nonlinear activation
module, we have no need to compute local gradients. For each of
such modules, the only thing we need to do is to back-propagate
the error signal from the output end to the input end. Because the
activation function is applied to each input component element-wise
to generate each output element, the Jacobian matrix Jx is a diagonal
matrix:

Jx =

[
∂yj

∂xi

]
n×n

=


φ′(x1)

. . .

φ′(xn)

n×n
where we denote φ′(x) ∆= d

dx φ(x).
Assuming e = ∂Q

∂y denotes the error signal of this module, the back-
propagation formula can be expressed in a compact way using
element-wise multiplication between two vectors in place of ma-
trix multiplication:

∂Q
∂x
= Jxe = φ′(x) � e,

where φ′(x) denotes a column vector
[
φ′(x1); · · · ; φ′(xn)

]
, and � stands

for element-wise multiplication.

We have

d

dx
ReLU(x) =


0 if x < 0

1 otherwise

= H(x).
For a ReLU activation module, we have

∂Q
∂x
= H(x) � e, (8.12)

where H(·) stands for the step function, as shown in Figure 6.4.
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For a sigmoid activation module, we have

∂Q
∂x
= l(x) �

(
1 − l(x)

)
� e, (8.13)

where l(x) denotes that the sigmoid function l(·) is applied to x
element-wise, and 1 is an n × 1 vector consisting of all 1s.

Referring to Eq. (6.15), we have

d

dx
l(x) = l(x)(1 − l(x)).

I Softmax
As shown in Figure 8.13, softmax is a special function that maps an
n-dimensional vector x (∈ Rn) into another n-dimensional vector
y inside the hypercube [0, 1]n. Similar to nonlinear activation, the
softmax function does not have any learnable parameters. For each
softmax module, we only need to back-propagate the error signal
from the output end to the input end.

Based on the softmax function in Eq. (6.18), we derive its Jacobian
matrix as follows (see margin note):

As in Eq. (6.18), the softmax function is
defined as

yj =
ex j∑n
i=1 e

xi
.

For any diagonal element, ∂y j

∂xi
(j = i), we

have
∂yi
∂xi
=

∂

∂xi

exi∑n
i=1 e

xi

=
exi

( ∑n
i=1 e

xi
)
− exi exi( ∑n

i=1 e
xi

)2

= yi (1 − yi ).

For any off-diagonal element, ∂y j

∂xi
(j , i),

we have

∂yj

∂xi
=

∂

∂xi

ex j∑n
i=1 e

xi

=
−ex j exi( ∑n
i=1 e

xi
)2

= −yjyi .

Jx =

[
∂yj

∂xi

]
n×n

=



y1(1 − y1) −y1y2 · · · −y1yn

−y1y2 y2(1 − y2) · · · −y2yn

...
...

...
...

−y1yn −y2yn · · · yn(1 − yn)

n×n
∆
= Jsm.

Assume the error signal of a softmax module is given as e = ∂Q
∂y ;

then we back-propagate it to the input end as follows:

∂Q
∂x
= Jsme. (8.14)

I Convolution
Let us first consider the simple convolution sum in Figure 8.10, which
connects an input vector x (∈ Rd) to an output vector y (∈ Rn) by
y = x ∗w with w ∈ R f .
As we know, the convolution sum is computed as follows:

yj =

f∑
i=1

wi × xj+i−1,
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for all j = 1, 2 · · · , n.
It is easy to derive the Jacobian matrix Jx as follows:

Jx =

[
∂yj

∂xi

]
d×n

=



w1

w2 w1

...
...

. . .

w f w f−1
. . . w1

w f w2

. . .
...

w f

d×n
Assume the error signal is given as e = ∂Q

∂y ; we have

∂Q
∂x
= Jxe =



w1

w2 w1

...
...

. . .

w f w f−1
. . . w1

w f w2

. . .
...

w f





∂Q
∂y1

∂Q
∂y2

...
∂Q
∂yn


=



w1
∂Q
∂y1

w2
∂Q
∂y1
+ w1

∂Q
∂y2

...

w f
∂Q
∂yn



Figure 8.30: Representing the error back-
propagation of a convolution sum as an-
other convolution sum.

After some inspections, as shown in Figure 8.30, we can see that the
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matrix multiplication can be represented by the following convolu-
tion sum:

∂Q
∂x
= e(∅) ∗←−w, (8.15)

where e(∅) denotes e with both ends padded with f − 1 0s, and←−w
denotes w with elements in reverse order:←−w = [w f · · · w2 w1]

ᵀ.

Next, let us look at how to compute the local gradients for kernel w
based on the error signal e. In this case, the Jacobian matrix w.r.t. w
can be computed as follows:

Jw =

[
∂yj

∂wi

]
f×n

=



x1 x2 · · · xn

x2 x3 · · · xn+1

...
...

. . .
...

x f x f+1 · · · xn+ f−1

 f×n
The local gradient ∂Q

∂w is computed as follows:

∂Q
∂w
= Jwe =



x1 x2 · · · xn

x2 x3 · · · xn+1

...
...

. . .
...

x f x f+1 · · · xn+ f−1





∂Q
∂y1

∂Q
∂y2

...
∂Q
∂yn


=



∑n
i=1 xi ei∑n

i=1 xi+1 ei
...∑n

i=1 xi+ f−1 ei


Similarly, this matrix multiplication can be represented as the follow-
ing convolution sum:

∂Q
∂w
= x ∗ e, (8.16)

where x ∈ Rd , and e ∈ Rn.
The idea of using convolution sums to conduct error back-propagation
and compute local gradients can be extended to the multidimen-
sional convolution in Eq. (8.5). The derivation details are left as
Exercise Q8.6, and the final results are given here. Assume we use xi
(∈ Rd×d) to stand for the ith input feature ply, ej (∈ Rn×n) for the er-
ror signal corresponding to the jth feature map, and wi j (∈ R f× f ) for
the kernel connecting the ith input feature ply to the jth feature map;
then the error back-propagation to the input end can be computed
as follows:

∂Q
∂xi
=

k∑
j=1

ej
(∅) ∗
←−−wi j (i = 1, 2 · · · p). (8.17)

In this case, zero padding and order reversal are done similarly for
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Figure 8.31: Representing the error back-
propagation of 2D convolution as another
convolution for one feature map and its
corresponding kernel. Here, we have f =
2, d = 3, n = 2.

2D matrices, as shown by a simple example in Figure 8.31.
Furthermore, for the local gradients w.r.t. the kernel, we have

∂Q
∂wi j

= xi ∗ ej (i = 1, 2 · · · p; j = 1, 2 · · · k), (8.18)

where xi ∈ Rd×d , and ej ∈ Rn×n.

I Normalization
Normalization is an important technique to train very deep neural
networks. We can still apply the Jacobian matrix method to derive
the formula to back-propagate the error signal as well as to compute
the local gradients for the normalization parameters.

Given any x(m) in B, when we consider
∂Q

∂x
(m)
i

for each element i = 1, 2, · · · , n, we

know all x̂(k)i in B (k = 1, · · ·M) depend
on x

(m)
i , and these x̂

(k)
i also depend on

µB(i) and σ2
B (i), each of which is in turn

a function of x
(m)
i . Moreover, σ2

B (i) also
depends on µB(i). Therefore, we may com-
pute

∂Q

∂x
(m)
i

=

M∑
k=1

∂Q

∂y
(k)
i

∂y
(k)
i

∂x̂
(k)
i

[
∂x̂
(k)
i

∂x
(m)
i

+
∂x̂
(k)
i

∂µB(i)

∂µB(i)

∂x
(m)
i

+
∂x̂
(k)
i

∂σ2
B (i)

(
∂σ2

B (i)

∂µB(i)

∂µB(i)

∂x
(m)
i

+
∂σ2

B (i)

∂x
(m)
i

)]
.

Based on the definition of batch normal-
ization on page 160, we may compute all
partial derivatives in this equation. Af-
ter some mathematical manipulations, we
may derive ∂Q

∂x
(m)
i

as follows:

γiMe
(m)
i −γi

∑M
k=1 e

(k)
i −γi x̂

(m)
i

∑M
k=1 e

(k)
i x̂

(k)
i

M
√
σ2

B (i) + ε

(∀i = 1, 2 · · · , n).

See Zakka [259] for more details.

Here, we take batch normalization as an example. As shown on page
160, each input element xi is first normalized to x̂i based on the
local mean µB(i) and variance σ2

B (i) estimated in the current mini-
batch B, and then it is rescaled to the corresponding output ele-
ment yi based on two learnable normalization parameters, γ and
β. Suppose that the current mini-batch B consists of M samples as
B = {x(1), x(2), · · · , x(M)}, and the corresponding output for x(m) is de-
noted as y(m) = BNγ,β(x(m)), and we denote its corresponding error
signal as

e(m) =
∂Q
∂y(m)

(m = 1, 2 · · ·M).

In order to back-propagate the error signal to the input end, we need
to compute the Jacobian matrix Jx. It is easy to verify that Jx is a
diagonal matrix, but it depends on all samples in the current mini-
batch B. After some mathematical derivations (see margin note),
we have the error back-propagation formula for each x(m) in B, as
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Figure 8.32: Keep track of indexes of
maximum values for back-propagation
in max-pooling.

follows:

∂Q
∂x(m)

=
Mγ � e(m) −

∑M
k=1 γ � e(k) − γ � x̂(m) �

( ∑M
k=1 e(k) � x̂(k)

)
M

√
σ2

B (i) + ε
,

where � denotes element-wise multiplication.
Similarly, we may derive the local gradients w.r.t. γ and β (see mar-
gin note) as follows:

∂Q

∂γi
=

M∑
k=1

∂Q

∂y
(k)
i

∂y
(k)
i

∂γi

=

M∑
k=1

e
(k)
i x̂

(k)
i

∂Q

∂βi
=

M∑
k=1

∂Q

∂y
(k)
i

∂y
(k)
i

∂βi

=

M∑
k=1

e
(k)
i .

∂Q
∂γ
=

M∑
k=1

x̂(k) � e(k)

∂Q
∂β
=

M∑
k=1

e(k).

We may extend this technique to other normalization methods, such
as layer normalization. This is left as Exercise Q8.7.

I Max-pooling
Max-pooling is a simple function that chooses the maximum value
within each sliding window and discards the other values. Max-
pooling does not have any learnable parameters, so for each max-
pooling module, we only need to back-propagate the error signal
to the input end. In order to do this, we need to keep track of the
location where each maximum value comes from the input. That is,
for each element yj in the output, we keep track of the location of
its corresponding maximum value in the input x as ĵ (i.e., yj = x ĵ),
as shown in Figure 8.32. Assuming the error signal is e = ∂Q

∂y , we
back-propagate the error signal using the following simple rule:

∂Q
∂xi
=


∂Q
∂yj

if i = ĵ

0 otherwise.

Finally, the Jacobian-matrix-based methods can be similarly used to back-
propagate error signals and to compute local gradients for the remaining
building blocks of neural networks, including time-delayed feedback, tapped
delay line, and attention. Once again, these are left as Exercises Q8.8 for
interested readers.

When we back-propagate error signals, if the modules in a network are
not connected serially, we need to handle some branching cases. Here, we
consider the following two branching cases:

I Merged input
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Figure 8.33: An illustration of a module
with a merged input.

As shown in Figure 8.33, if a module receives a merged input from
two preceding models (i.e., x = x1 + x2), we use the same back-
propagation method to propagate the error signal from the immedi-
ate input end (i.e., ∂Q∂x ). And we immediately have

∂Q
∂x1
=
∂Q
∂x2
=
∂Q
∂x

. (8.19)

I Split output

Figure 8.34: An illustration of a module
with a split output

As shown in Figure 8.34, consider the case where the output of a
module is branched out to two different paths (i.e., y1 = y2 = y).
Assume that the error signals have been propagated to y1 and y2,
and we already know the partial derivatives ∂Q

∂y1
and ∂Q

∂y2
.

Based on the chain rule (see margin note), we just need to compute

∂Q
∂y
=
∂Q
∂y1
+
∂Q
∂y2

(8.20)

before we propagate it to the input end x.

According to the chain rule, we have

∂

∂y
Q

(
y1, y2

)
=

∂

∂y1
Q

(
y1, y2

) ∂y1

∂y

+
∂

∂y2
Q

(
y1, y2

) ∂y2

∂y
.

If we substitute y1 = y and y2 = y, we
derive Eq. (8.20).

Relying on these back-propagation results, we are able to derive the full
AD procedure to compute the gradients of all model parameters in any
neural network structure. Next, we consider a popular neural network
structure, namely, the fully connected deep neural network, as shown in
Figure 8.19, as an example to demonstrate how to properly combine the
previous results to derive the entire backward AD pass to compute the
gradients of all network parameters.

Example 8.3.1 Fully Connected Deep Neural Networks

Considering the fully connected deep neural network shown in Figure
8.19 (copied here), assume we use the CE error as the loss function,
and derive the full backward pass to compute the gradients of all net-
work parameters for one training sample (x, r), where we use the 1-of-K
encoding for r and use the scalar r to indicate the position of 1 in r.
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Figure 8.35: Fully connected deep neural
network in Figure 8.19 is copied here.

First, we use W to denote all network parameters in the neural network,
which include all connection-weight matrices and the biases of all layers
(i.e., W =

{
W(l), b(l) | l = 1, 2 · · · L

}
). Given a training sample (x, r), the

objective function is derived based on the CE error as

Q(W; x) = − ln
[
y
]
r
= − ln yr

where y denotes the output of the neural network when x is fed as input.
We have

∂Q(W; x)
∂y

=



0
...

0

− 1
yr

0
...

0


where the only nonzero value − 1

yl
appears in the rth position.

In this network structure, because we only have learnable parameters in
full-connection modules, we just need to maintain the error signals of all
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full-connection modules, denoted as

e(l) =
∂Q(W; x)

∂al

for all l = L, · · · , 2, 1.

To derive e(L), we just need to back-propagate ∂Q(W;x)
∂y through the softmax

module, as follows:

e(L) = Jsm

∂Q(W; x)
∂y

=



y1(1 − y1) −y1y2 · · · −y1yn

−y1y2 y2(1 − y2) · · · −y2yn

...
...

...
...

−y1yn −y2yn · · · yn(1 − yn)





0
...

0

− 1
yr

0
...

0



=



y1

y2

...

yr − 1
...

yn



(8.21)

Next, to derive e(l) from e(l+1) for l = L − 1, · · · , 2, 1, we just need to back-
propagate through a full-connection module of

{
W(l+1), b(l+1)} and a ReLU

activation module:

∂Q(W; x)
∂zl

=
(
W(l+1))ᵀe(l+1)

e(l) =
∂Q(W; x)

∂zl
� H(zl) =

( (
W(l+1))ᵀe(l+1)

)
� H(zl).

For the lth layer, the local gradients w.r.t. the connection-weight matrix
W(l) and the bias vector b(l) can be derived based on e(l) as follows:

∂Q(W; x)
∂W(l)

= e(l)
(
zl−1

)ᵀ
(l = L, · · · , 2, 1)
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∂Q(W; x)
∂b(l)

= e(l) (l = L, · · · , 2, 1).

�

Finally, we can summarize the entire backward pass to compute the gradi-
ents for fully connected deep neural networks as follows:

Backward Pass of Fully Connected Deep Neural Networks

Given an input–output pair (x, r), it generates the gradients of the
CE error w.r.t. all network parameters.

1. For the output layer L:

e(L) =
[
y1 y2 · · · yr − 1 · · · yn

]ᵀ.
2. For each hidden layer l = L − 1, · · · , 2, 1:

e(l) =
( (

W(l+1))ᵀe(l+1)
)
� H(zl).

3. For all layers l = L, · · · , 2, 1:

∂Q(W; x)
∂W(l)

= e(l)
(
zl−1

)ᵀ
∂Q(W ; x)
∂b(l)

= e(l).

Here, y and zl (l = 0, 1, · · · , L − 1) are saved in the forward pass.

8.3.3 Optimization Using Stochastic Gradient Descent

Once we know how to compute the gradients of network parameters,
all parameters can be iteratively learned based on any gradient descent
method. The traditional method to learn neural networks is the so-called
mini-batch stochastic gradient descent (SGD) algorithm.

As shown in Algorithm 8.8, we normally need to run the SGD algorithm
through the training set many times before the learning converges. One
entire pass to scan all training data is usually called an epoch. In each epoch,
we first randomly shuffle all training data and split them into equally
sized mini-batches. The size of a mini-batch must be chosen properly for
the best possible result. For each mini-batch, we run both forward-pass
and backward-pass algorithms as described previously to compute the
gradients for every training sample in the mini-batch. These gradients
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from the same mini-batch are accumulated and averaged, and then the
averaged gradient is used to update network parameters based on a
prespecified learning rate. The updated model is used to process the next
available mini-batch in the same way. After we have processed all mini-
batches in the training set, we may need to adjust the learning rate at the
end of every epoch. In most cases, the learning rate needs to be reduced
according to a certain annealing schedule as training continues. This
procedure is repeated over and over until the learning finally converges.

Algorithm 8.8 Stochastic Gradient Descent to Learn Neural Networks

randomly initialize W(0), and set η0
set n = 0 and t = 0
while not converged do

randomly shuffle training data into mini-batches
for each mini-batch B do

for each x ∈ B do
i) forward pass: x→ y
ii) backward pass:

{
x, y

}
→

∂Q(W(n) ; x)
∂W

end for
update model: W(n+1) =W(n) −

ηt
|B |

∑
x∈B

∂Q(W(n) ; x)
∂W Here, ηt denotes the learning rate used in

the tth epoch, and |B | denotes the size of
B in number of samples.

n = n + 1
end for
adjust ηt → ηt+1
t = t + 1

end while

8.4 Heuristics and Tricks for Optimization

Conceptually speaking, the learning algorithm of neural networks is
fairly straightforward. The key is to use a stochastic version of first-order
gradient-descent-based optimization methods. The AD method systemati-
cally derives gradients for any neural network structures. However, there
are two issues worth mentioning. First, the computational expenses are
extremely high, especially when large-scale models are learned from an
enormous amount of training data. No matter what network structures
are used, both forward and backward passes usually involve a large num-
ber of matrix multiplications. Moreover, the mini-batch SGD algorithm
may need to run a considerable number of epochs before it converges.
These factors explain why these learning algorithms were well known sev-
eral decades ago but have not shined until very recently with the advent
of powerful computational resources, such as general-purpose graphics-
processing units (GPUs). GPUs can significantly accelerate matrix multi-
plications compared with regular central processing units (CPUs). When
large matrices are involved, it is normal to expect that GPUs can speed up
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matrix computations by orders of magnitude. This makes GPUs an ideal
computational platform for neural networks. Both learning and inference
algorithms can be implemented efficiently using GPUs. Second, the con-
ceptually simple SGD learning algorithm involves many hyperparameters,
which cannot be automatically learned from data and must be manually
chosen based on some heuristics. Even worse, these heuristic rules are
not always intuitive, and the effects of various parameters can become
entangled. In many cases, the behavior of the learning algorithms becomes
totally incomprehensible when these hyperparameters are changed from
one combination to another. The performance of neural networks heavily
relies on a good choice of these hyperparameters, but the way to find
these is highly empirical, often requiring a careful trial-and-error fine-
tuning process. When large-scale neural networks are learned from a large
training set, this fine-tuning process may be extremely time consuming.

Here, let us first consider some important hyperparameters related to
Algorithm 8.8, such as how to initialize network weights at the beginning,
how many epochs we will run before termination, how large each mini-
batch should be, how to initialize the learning rate, and how to adjust it
during the learning process. In the discussion that follows, we will briefly
explore the general principles behind selecting these hyperparameters.

I Parameter initialization
In practice, it is empirically found that random initialization works
well for neural networks. At the beginning of Algorithm 8.8, all
network parameters are randomly set according to a uniform or
Gaussian distribution centered at 0 [82].

I Epoch number
In Algorithm 8.8, we need to determine how many epochs we need to
run before we terminate. The termination condition usually depends
on the learning curves (we will discuss this later on), and sometimes,
it is also a trade-off between running time and accuracy. When the
training data are limited, we may take the common approach called
early stopping to avoid overfitting. In this case, the learning of neural
networks is terminated before the performance on the training data
is fully converged because further improvement in the training set
may come at the expense of increased generalization errors.

I Mini-batch size
When we use smaller mini-batches in Algorithm 8.8, the gradient
estimates are more noisy at each model update. These noises may
fluctuate in the learning process and eventually slow down the con-
vergence of learning. On the other hand, these fluctuations may be
beneficial for the learning process to escape from poor initialization
or saddle points or even bad local optimums. When bigger mini-
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batches are used, the learning curves are typically smoother, and
the learning converges much faster. However, it does not always
converge to a satisfactory local optimal point. Another advantage of
using bigger mini-batches is that we can parallelize forward/back-
ward passes of all samples within each mini-batch. If the mini-batch
is big enough, we can make full use of the large number of com-
puting cores in GPUs so that the total running time of an epoch is
significantly reduced.

I Learning rate
A good choice of learning rate is the most crucial hyperparameter
for Algorithm 8.8 to yield the best possible performance. This in-
cludes how to choose an initial learning rate at the beginning and
how to adjust it at the end of every epoch. Like all first-order opti-
mization methods, Algorithm 8.8 has no access to the curvature of
the underlying loss function, and at the same time, the number of
model parameters is too large to manually tune different learning
rates for different model parameters. As a result, first-order opti-
mization methods normally use the same learning rate for all model
parameters at each update. This forces us to make a very conser-
vative choice for this single learning rate at each time step because
we need to ensure this learning rate is not too large for most model
parameters. Otherwise, the model update will overshoot the local
optimum during the learning process. On the other hand, the con-
servative choice of too-small learning rates at each time step will
make Algorithm 8.8 converge extremely slowly because it needs
to run many epochs. Moreover, as the learning proceeds and we
get closer to a local optimal point, typically even smaller learning
rates must be used to avoid the overshooting of the local optimum.
Therefore, in Algorithm 8.8, we have to follow a prespecified an-
nealing schedule to gradually reduce the learning rate at the end of
every epoch. Normally, a multiplicative rule is used to update the
learning rate; for example, the learning rate is halved or multiplied
by another hyperparameter α ∈ (0, 1) at the end of each epoch when
some conditions are met. Finally, another complication is that the
behavior of learning algorithms under different choices of learning
rates is poorly understood. When we change the learning rate from
one choice to another on the same task or when we switch to work
on a different task, the behavior of the learning algorithm is highly
unpredictable unless we actually conduct all experiments. Therefore,
it is an extremely painful and time-consuming process to look for
the best learning rate for any particular task.
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8.4.1 Other SGD Variant Optimization Methods: ADAM

Assuming that enough computing resources are available to fine-tune
the hyperparameters, the mini-batch SGD algorithm in Algorithm 8.8
usually yields strong performance for a variety of tasks. However, many
SGD variant algorithms have also been proposed to ease the potential
fine-tuning efforts required in the learning of neural networks. Some
typical algorithms include momentum [192], Adagrad [55], Adadelta [260],
adaptive moment estimation (ADAM) [129], and AdaMax [129]. In these
methods, some mechanisms are introduced to self-adjust the learning
rates for SGD. By doing so, we only need to select a proper initial learning
rate, and the algorithm will automatically adapt the learning rate for
different model parameters according to some accumulated statistics. In
the following, we introduce the popular ADAM algorithm originally
proposed by Kingma and Ba [129].

Algorithm 8.9 ADAM to Learn Neural Networks

randomly initialize W(0), and set η
set t = 0, n = 0 and u0 = v0 = 0
while not converged do

randomly shuffle training data into mini-batches
for each mini-batch B do

for each x ∈ B do
i) forward pass: x→ y
ii) backward pass:

{
x, y

}
→

∂Q(W(n) ; x)
∂W

end for
gn =

1
|B |

∑
x∈B

∂Q(W(n) ; x)
∂W

gn denotes the averaged gradient over a
mini-batch.

un+1 = α un + (1 − α)gn

vn+1 = β vn + (1 − β)gn � gn

un+1 and vn+1 denote the exponential
moving averages of first and second mo-
ments of the gradients over time.

ûn+1 =
un+1

1−αn+1 and v̂n+1 =
vn+1

1−βn+1
ûn+1 and v̂n+1 denote unbiased estimates
of the first and second moments. update model: W(n+1) =W(n) − η · ûn+1 �

(
(v̂n+1 + ε

2)−
1
2

)
n = n + 1

end for
t = t + 1

end while
Kingma and Ba [129] propose to use the
following default values to set all hyper-
parameters in ADAM:

η = 0.001,

α = 0.9,

β = 0.999,

ε = 10−8.

As shown in Algorithm 8.9, the ADAM algorithm uses exponential mov-
ing averages, un+1 and vn+1, to estimate the first-order and second-order
moments of the averaged gradients over time. And then these moving av-
erages are normalized to derive unbiased estimates, ûn+1 and v̂n+1. These
unbiased estimates are used to automatically adjust the learning rate over
time. As a result, we only need to set the initial learning rate η, and the
ADAM algorithm will automatically anneal it as the learning proceeds. In
order to see how this annealing mechanism works, let us look at the ith
element of these estimates, denoted as un+1(i) and vn+1(i). After we expand
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it over n, we have

un+1(i) = (1 − α)
(
gn(i) + α · gn−1(i) + α2 · gn−2(i) + · · ·

)
vn+1(i) = (1 − β)

(
g2
n(i) + β · g

2
n−1(i) + β

2 · g2
n−2(i) + · · ·

)
,

where gn(i) denotes the ith element of gn.

Furthermore, we can derive the formula to compute the ith element of the
unbiased estimates as follows:

ûn+1(i) =
un+1(i)

1 − αn+1 =
gn(i) + α · gn−1(i) + α2 · gn−2(i) + · · ·

1 + α + α2 + · · ·

v̂n+1(i) =
vn+1(i)

1 − βn+1 =
g2
n(i) + β · g

2
n−1(i) + β

2 · g2
n−2(i) + · · ·

1 + β + β2 + · · ·
.

Moreover, we assume the averaged gradients gn(i) are slowly changing
over n (i.e., E

[
gn−k (i)

]
= E

[
gn(i)

]
for small k = 1, 2, · · · ). Therefore, the

previous two equations clearly show that

E
[
ûn+1(i)

]
= E

[
gn(i)

]
E

[
v̂n+1(i)

]
= E

[
g2
n(i)

]
. (8.22)

Next, let us look at the model-update formula in Algorithm 8.9, which
shows that the ith parameter in W is updated as follows:

W
(n+1)
i =W

(n)
i − η

ûn+1(i)√
v̂n+1(i) + ε2

,

where a small positive number ε is added to ensure numerical stability
when the estimated v̂n+1(i) becomes extremely small. We ignore ε and
denote the update for the ith parameter as follows:

∆W
(n)
i = η

ûn+1(i)√
v̂n+1(i)

,

where the numerator is an unbiased estimate of the gradient gn(i), and it
is normalized by an estimate of the second-order moment. According to
Eq. (8.22), its magnitude can be roughly estimated as follows:

Note that

E
[
x2] = (

E
[
x
] )2
+ var

[
x
]

∆W
(n)
i

2
' η2

(
E

[
ûn+1(i)

] )2

E
[
v̂n+1(i)

] =
η2 (E[

gn(i)
] )2(

E
[
gn(i)

] )2
+ var

[
gn(i)

] .

As we can see in panel (a) of Figure 8.36, if the ith parameter fluctuates
around an optimum, its gradients are alternatively positive and negative
(i.e., E

[
gn(i)

]
→ 0), and var

[
gn(i)

]
is large, then the ADAM algorithm will
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Figure 8.36: Two scenarios of parameter
updates in SGD. Panel (a): Fluctuations
around an optimum at top. Panel (b):
Steady updates toward an optimum at
bottom.

automatically reduce the update for the ith parameter as
∆W

(n)
i

2
→ 0.

On the other hand, if the ith parameter is still far away from the optimum,
as shown in panel (b) of Figure 8.36, all gradients are either positive or
negative so that

(
E

[
gn(i)

] )2 tends to be large and var
[
gn(i)

]
is small. As a

result, the magnitude
∆W

(n)
i

2 is large in this case; namely, the update for
this parameter will be relatively large as well. Hence, the ADAM algorithm
will steadily update this parameter toward the optimum.

8.4.2 Regularization

Similar to other discriminative models, we can apply a variety of regular-
ization methods in the learning of neural networks. These regularization
techniques play an important role when the training set is relatively small.
The following list briefly introduces several regularization methods com-
monly used for neural networks:

I Weight decay
When we construct the objective function to learn neural networks, it
is possible to add Lp norm-regularization terms. When the L2 norm
is used [133], the resultant model-update rule is colloquially called
weight decay. In this case, the combined objective function may be
represented as

Q(W) +
λ

2
·
W

2.

The model-update formula in the SGD for this objective function can
be easily derived as

W(n+1) =W(n) − η
∂Q(W(n))

∂W
− λ ·W(n),

where the extra term in the update formula (i.e., λ ·W(n)) tends to
reduce the magnitude of the model parameters and push it toward
the origin during the learning process. This is why this method is
called weight decay.

I Weight normalization
Zhang et al. [263] and Salimans and Kingma [209] have proposed
some reparameterization methods to normalize weight vectors in
neural networks. Assume w is a weight vector in one particular layer
that generates an input to any neuron in a neural network; in Zhang
et al. [263], w is reparameterized as

w = γ · v s.t. | |v| | ≤ 1,
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where γ is a scalar parameter, and v is a vector constrained inside
the unit sphere.
On the other hand, in Salimans and Kingma [209], the weight vector
is reparameterized as

w =
γ

| |v| |
v,

where both the scalar γ and v are free parameters.

It is evident that these weight-normalization methods are mathemat-
ically equivalent to the original model. They are two reparameteriza-
tions that can be used to separate the norm of a weight vector from its
direction without sacrificing the expressiveness of the model. They
have a similar effect as batch normalization that normalizes each
input by the standard deviation. Like batch normalization, these
methods can facilitate the learning of neural networks by smoothing
the loss function.

I Data augmentation and dropout
Data augmentation represents various convenient methods of gener-
ating more alternative training samples from the raw training data,
for example, by injecting small noises into raw data or slightly alter-
ing raw data. It is well known that injecting small noises into training
data will improve the generalization of learned models. Data aug-
mentation is particularly convenient for images because each raw
image can be slightly transformed into separate training copies by
rotation, crop, translation, shear, zoom, flip, reflection, and color
renormalization. When data augmentation is used, the model will
see slightly different copies of the same training sample in different
training epochs. This will improve the generalization ability of the
model.

Srivastava et al. [230] propose a simple method called dropout to
inject noise into the learning process of neural networks, where
the activation outputs of some neurons are dropped in the forward
pass, and these dropped neurons are randomly selected at each time
according to a probability distribution. The dropout method is very
easy to implement, and it is equally applicable to any type of training
data. On the other hand, the dropout method typically slows down
the convergence of the learning algorithm, so we need to run many
more epochs when dropout is used.
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8.4.3 Fine-Tuning Tricks

As we have discussed, it is a painful process to fine-tune all hyperparame-
ters when learning large neural networks for the best possible performance.
First of all, the high computational cost prevents us from performing a
full grid search for the best combination of hyperparameters. Second, be-
cause of the high dimensionality of the learning problems, it is hard to
visualize the learning process and examine what is going on. Because of
the complexity of the settings, it is very challenging to pinpoint the cause
of problems that arise. This section introduces some very basic rules that
provide guidance during the fine-tuning process. For more fine-tuning
tricks, interested readers may refer to other sources, such as Ng [174].

During the fine-tuning process, it is important to monitor the following
three learning curves. By comparing these three learning curves, we can
gain lots of information about the current learning process and how to
further adjust the hyperparameters to improve performance.

I The objective function
The first learning curve is plotted as the objective function evaluated
at the end of every epoch. At each epoch, we use the latest model
to compute the objective function on the training set. If the training
set is too large, it is fine to use a fixed subset of the whole training
data for this purpose. This learning curve gives a rough picture of
how the optimization proceeds from one epoch to the next and also
provides information on the suitability of many hyperparameters.

Figure 8.37: An illustration of several
learning curves using different learning
rates.

As shown in Figure 8.37, based on the shape of the learning curve,
we may roughly know whether the used learning rate is too big or
too small. We should adjust the learning rate to make it behave like
the red one in Figure 8.37.
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I Performance on training data
The second curve is plotted by evaluating the model performance on
the training set at the end of every epoch. If it is a classification task,
the performance refers to the classification error rate on the training
set (or a fixed subset of the training set). This learning curve should
be strongly correlated with the first curve. Otherwise, it indicates
that the formulation of the learning is problematic or that the imple-
mentation is buggy.

I Performance on development data
The third curve is plotted by evaluating the model performance on
an unseen development set at the end of every epoch. This curve is a
good indicator for determining when the learning algorithm should
be terminated.
Moreover, the gap between the second and third curves provides lots
of information on whether the current learned model is underfitting
or overfitting. Based on how big this gap is, we may need to adjust
the model size accordingly or modify the regularization method
used.

8.5 End-to-End Learning

When we build a traditional machine learning system, it normally involves
a pipeline of several individual steps, such as feature extraction and model
construction. For a complex task, we even divide each of these steps further
into some separate modules. For example, when building a conventional
speech-recognition system, we usually break down the model construction
into at least three modules: acoustic models, lexicon models, and language
models. Acoustic models are used to represent how all phonemes in a
language are distributed in the feature space and how they are affected by
neighboring phonemes, a lexicon is assembled to indicate how every word
is pronounced, and language models are trained to compute how likely
it is that various words form a meaningful sentence. In most cases, these
submodules are normally trained independently from their individually
collected data by optimizing a local learning criterion only related to each
module.

On the contrary, end-to-end learning refers to training a single model that
can map directly from the raw data as input to the final targets as output
for some potentially complex machine learning tasks, bypassing all the
intermediate modules in the traditional pipeline design. It is understand-
able that end-to-end learning requires a powerful model that can handle
all complex implications in a traditional pipeline. As we have learned,
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deep neural networks are superior in modeling capacity and very flexible
in structural configuration to accommodate a variety of data types, such
as static patterns and sequences. Moreover, the aforementioned standard
structures in neural networks can be further customized in a special way
to generate real-world data as output, for example, producing word se-
quences in the encoder–decoder structure [232], outputting dense images
from the deconvolution layers [148], and generating audio waveforms in
the WaveNet model [178].

Taking advantage of the highly configurable structure in neural networks,
we are able to build flexible deep neural networks to conduct end-to-end
learning for a variety of real-world applications, where each network layer
(or a group of layers) can be learned to specialize in an intermediate task
in the traditional pipeline design. End-to-end learning is appealing for
many reasons. First, all components in end-to-end learning are jointly
trained based on a single objective function closely related to the ultimate
goal of accomplishing the underlying task. In contrast, each module in
the traditional pipeline approach is normally learned separately, so it may
be suboptimal in some way. Second, as long as we can collect enough
end-to-end training data, we can quickly build machine learning systems
for a new task without having much domain knowledge.

Here, we will use sequence-to-sequence learning [232] as an example to
briefly introduce the main idea of end-to-end learning.

8.5.1 Sequence-to-Sequence Learning

Sequence-to-sequence learning refers to learning a deep neural network to
map from one input sequence into an output sequence. It actually repre-
sents a very general learning framework because it covers many important
applications in the real world. For example, speech-recognition systems
convert speech audio streams into word sequences, and speech-synthesis
systems convert word sequences back to speech audio streams. Further-
more, many natural-language-processing tasks can also be formulated as a
sequence-to-sequence learning problem. Machine translation systems con-
vert a word sequence in the source language into another word sequence
in the target language. A question-answering system can be viewed as
mapping a sequence of words in a question into a sequence of words in
its answer.

Most sequence-to-sequence learning systems adopt the so-called encoder–
decoder structure, as shown in Figure 8.38, where two neural networks
are used: one as an encoder V and the other as a decoder W. For both V

and W, we can choose any neural networks that are suitable to handle
sequences, such as RNNs, LSTMs, or transformers. The encoder V aims
to convert each input sequence into a compact fixed-size representation z
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Figure 8.38: An illustration of the
encoder–decoder structure for sequence-
to-sequence learning in a Chinese-to-
English machine translation task.

while the decoder W will generate an output sequence using z as input.
As shown in Figure 8.38, the decoder is implemented in such a way that
it takes z and a partial output sequence as input at each step and tries to
predict the next word in the output sequence. The decoder normally needs
to run recursively until it reaches an end-of-sequence symbol. Similar to
autoencoders, both the encoder V and the decoder W are jointly learned
from some pairs of input and output sequences.

Vaswani et al. [244] propose a cross-attention
mechanism for the cases where transform-
ers are used as the decoder W. At each
step, the partial output sequence is first
processed by a regular self-attention mech-
anism, as shown in Figure 8.27, and then
the output is forwarded to generate the
query matrix Q in another cross-attention
module that is also similar to Figure 8.27,
except that the other two matrices K and
V are generated from a different source
(i.e., z).
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Lab Project IV

In this project, you will implement several neural networks for pattern classification. You may choose to use
any programming language for your own convenience. You are only allowed to use libraries for linear algebra
operations, such as matrix multiplication, matrix inversion, matrix factorization, and so forth. You are not
allowed to use any existing machine learning or statistics toolkits or libraries or any open-source code for
this project. You will have to implement most parts of the model learning and testing algorithms yourself for
practice with the various algorithms covered in this chapter. That is the purpose of this project.

Once again, you will use the MNIST data set [142] for this project, which is a handwritten digit set containing
60,000 training images and 10,000 test images. Each image is 28 by 28 in size. The MNIST data set can
be downloaded from http://yann.lecun.com/exdb/mnist/. In this project, for simplicity, use pixels as raw
features for the following models.

a. Fully connected deep neural network
Implement the forward and backward passes for fully connected deep neural networks, as in Figure
8.19. Use all training data to learn a 10-class classifier with your own back-propagation implementation,
investigate various network structures (e.g., different number of layers and nodes per layer), and report
the best possible classification performance in the held-out test images.

b. Convolutional neural network
Implement the forward and backward passes for CNNs in the following figure. Use all training data to
learn a 10-class classifier with your own back-propagation implementation, investigate classification accu-
racy by slightly varying network structures (e.g., various combinations of convolution layers of various
kernel sizes, max-pooling layers, and fully connected layers), and report the best possible classification
performance in the held-out test images.

http://yann.lecun.com/exdb/mnist/
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Exercises

Q8.1 Full connection and convolution are closely related:

a. Show that convolution can be viewed as a special case of full connection where W and b take a
particular form. What is this particular form of W and b?

b. Show that full connection can also be viewed as a special case of convolution where the kernels are
chosen in a certain way. What is this particular choice of kernels?

Q8.2 If we use the fully connected deep neural network in Figure 8.19 for a pattern-classification task that
involves some nonexclusive classes, show how to configure the output layer and formulate the CE loss
function to accommodate these nonexclusive classes.

Q8.3 Consider a simple CNN consisting of two hidden layers, each of which is composed of convolution
and ReLU. These two hidden layers are then followed by a max-pooling layer and a softmax output layer.
Assume each convolution uses K kernels of 5× 5 with a stride of 1 in each direction (no zero padding). All
these kernels are represented as a multidimensional array, denoted as W( f1, f2, p, k, l), where 1 ≤ f1, f2 ≤ 5,
1 ≤ k ≤ K , and l indicates the layer number l ∈ {1, 2}, and p indicates the number of feature maps
in each layer. The max-pooling layer uses 4 × 4 patches with a stride of 4 in each direction. Derive the
back-propagation procedure to compute the gradients for all kernels W( f1, f2, p, k, l) in this network when
CE loss is used.

Q8.4 In object recognition, translating an image by a few pixels in some direction should not affect the category
recognized. Suppose that we consider images with an object in the foreground on top of a uniform
background. Also suppose that the objects of interest are always at least 10 pixels away from the borders of
the image. Is the CNN in Q8.3 invariant to the translation of at most 10 pixels in some direction? Here, the
translation is applied only to the foreground object while keeping the background fixed. If your answer is
yes, show that the CNN will necessarily produce the same output for two images where the foreground
object is arbitrarily translated by at most 10 pixels. If your answer is no, provide a counter-example by
describing a situation where the output of the CNN is different for two images where the foreground
object is translated by at most 10 pixels. If your answer is no, can you find any particular translation of
less than 10 pixels in which the CNN will generate an invariant output for the translation?

Q8.5 Unfold the following HORNN [228] into a feed-forward structure without using any feedback:

Q8.6 Use the AD rules to derive the backward-pass formulae in Eqs. (8.17) and (8.18) for multidimensional
convolutions.



202 8 Neural Networks

Q8.7 Following the derivation of batch normalization, derive the backward pass for layer normalization.

Q8.8 Using the AD rules, derive the backward pass for the following layer connections:

a. Time-delayed feedback in Figure 8.16
b. Tapped delay line in Figure 8.17
c. Attention in Figure 8.18

Q8.9 Suppose that we have a multihead transformer as shown in Figure 8.27, where A(j), B(j) ∈ Rl×d , C(j) ∈
Ro×d ( j = 1 · · · J).

a. Estimate the computational complexity of the forward pass of this transformer for the input sequence
X ∈ Rd×T .

b. Derive the error back-propagation to compute the gradients for A(j), B(j), C(j) when an objective
function Q(·) is used.

Q8.10 Compared to a transformer, the feed-forward sequential memory network (FSMN) [262] is a more efficient
model to convert a context-independent sequence into a context-dependent one. An FSMN uses the tapped
delay line shown in Figure 8.17 to convert a sequence

{
y1, y2, · · · , yT

}
(yi ∈ Rn) into

{
ẑ1, ẑ2, · · · , ẑT

}
(ẑi ∈ Ro) through a set of bidirectional parameters

{
ai

�� i = −L + 1, · · · , L − 1, L
}
.

a. If each ai is a vector (i.e., ai ∈ Rn), estimate the computational complexity of an FSMN layer. (Note
that o = n in this case.)

b. If each ai is a matrix (i.e., ai ∈ Ro×n), estimate the computational complexity of an FSMN layer.
c. Assume n = 512, o = 64, T = 128, J = 8, L = 16; compare the total number of operations in the forward

pass of one layer of such a matrix-parameterized FSMN with that of one multihead transformer in
the box on page 174. How about using a vector-parameterized FSMN (assume o = 512 in this case)?
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This chapter discusses another methodology to learn strong discrimina-
tive models in machine learning, which first builds multiple simple base
models from given training data and then aims to combine them in a
good way to form an ensemble for the final decision making in order
to obtain better predictive performance. These methods are often called
ensemble learning in the literature. This chapter first discusses the idea of
ensemble learning in general and then introduces how to automatically
learn decision trees for classification and regression problems because de-
cision trees currently remain the most popular base models in ensemble
learning. Next, several basic strategies to combine multiple base models
are presented, such as bagging and boosting. Finally, the popular AdaBoost
and gradient-tree-boosting methods and the fundamental principles behind
them are introduced.

9.1 Formulation of Ensemble Learning

Even in the early days of machine learning, people had already observed
the interesting phenomenon that the final predictive performance on a
machine learning task could be significantly improved by combining some
separately trained systems with a fairly simple method, such as averaging
or majority voting, as long as there is significant diversity among these
systems. These empirical observations have motivated a new machine
learning paradigm, often called ensemble learning, where multiple base
models are separately trained to solve the same problem, and then they
are combined in a certain way in order to achieve more accurate or robust
predictive performance on the same task [48, 90, 100, 227, 63, 179].

In ensemble learning, we normally have to address the following three
fundamental issues:

I How to choose base models for the ensemble?
In the early days, we often chose linear models or fully connected
feed-forward neural networks as the base models in ensemble learn-
ing [48, 90]. More recently, decision trees have become the dominant
base models in ensemble learning because of the high flexibility of
using decision trees to accommodate various types of input data, as
well as the great efficiency of automatically growing a decision tree
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from data. Unlike the black-box neural networks, a noticeable ad-
vantage of decision trees is that the learned tree structures are highly
interpretable. In the last part of this section, we will briefly explore
some popular methods for learning decision trees for regression and
classification tasks.

I How to learn many base models from the same training set to
maintain the diversity among them?
All base models in the ensemble are separately learned from the same
training set, but we have to apply some tricks in the training process
to ensure all base models are diverse. The final ensemble model is
guaranteed to outperform these base models only when the outputs
from the base models are somehow different and complementary.
The common tricks include resampling the training set for each base
model so that each base model uses a different subset of the training
data or reweighting all training samples differently so that each base
model is built to focus on a different aspect of the training data.

I How to combine these base models to ensure the best possible
performance of the ensemble model?
In many ensemble learning methods, the learned base models are
combined in a relatively simple way, such as bagging [30] or boosting
[214, 68, 215]. In these methods, we tend to use a simple additive
model to combine the outputs from all base models to generate the
final result for the ensemble model. For example, we can use an
average (or a weighted average) of the outputs from all base models
as the final result in a regression task, or we can use a majority-voting
result of the decisions from all base classifiers in a classification
task. In other ensemble learning methods, such as stacking (a.k.a.
stacked generalization) [252, 31], we can train a high-level model, often
called the meta-model, to make a final prediction using the predictions
of all base models as its inputs. In order to alleviate overfitting,
we normally use one training set to learn all base models but a
separate held-out set to learn the meta-model. The common choices
for the meta-model in stacking include logistic regression and neural
networks.

Among these issues, the way to combine all base models is normally
closely related to the way in which each base model is actually learned. In
Section 9.2, we will first explore the bagging method, where all base models
are learned independently and the resultant base models are linearly
combined as the final ensemble model. In particular, we will introduce
the famous random-forest method as a special case of bagging. In Section
9.3, we will explore the boosting method from the perspective of gradient
boosting, where the base models are sequentially learned one by one and,
at each step, a new base model is built using a gradient descent method in
some model spaces. Afterward, we will focus on the popular AdaBoost and
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Figure 9.1: An illustration of a decision-
tree model taking two features x =[
x1 x2

]ᵀ as input.

Figure 9.2: An illustration of an input
space partition by the decision-tree model
in Figure 9.1.

Figure 9.3: An illustration of the piece-
wise constant function represented by the
decision-tree model in Figure 9.1. (Image
source: [92].)

gradient-tree-boosting methods as two special cases of the gradient-boosting
method.

In the remainder of this section, let us briefly explore some basic concepts
and learning algorithms for decision trees because they are the dominant
base models in ensemble learning.

9.1.1 Decision Trees

ML model
x y

Decision trees are a popular nonparametric machine learning method for
regression or classification tasks, which are also called classification and
regression trees (CARTs) [34, 193]. As shown in margin note, these tasks
can normally be viewed as a system taking x as input and generating y

as output. Assuming that the input feature vector x ∈ Rd consists of a
number of features as

x =
[
x1 x2 · · · xd

]ᵀ,
a decision-tree model can be represented as a binary tree. For example, the
simple example shown in Figure 9.1 uses a two-dimensional (2D) input
vector x =

[
x1 x2

]ᵀ. In a decision-tree model, each nonterminal node is
associated with a binary question regarding a feature element xi and a
threshold tj , taking the form xi ≤ tj . Each leaf node represents a region
Rl in the input space. Given any input feature vector x, we start from the
root node and ask the question associated with the node. If the answer
is TRUE, it falls into the left child node. Otherwise, it falls into the right
child node. This process continues until we reach a leaf node. As a result,
each decision tree represents a particular way to partition the input space
into a set of disjointed rectangle regions. For example, the decision tree in
Figure 9.1 actually partitions the input space R2 as shown in Figure 9.2.

In decision-tree models, we normally fit a simple model to all y values
in each region. For a regression problem, we use the constant cl to repre-
sent all y values in each region Rl . Therefore, for regression problems, a
decision-tree model essentially approximates the unknown target function
between the input and output (i.e., y = f̄ (x)) with a piece-wise constant
function, as shown in Figure 9.3. We can represent this piece-wise constant
function as follows:

y = f (x) =
∑
l

cl I(x ∈ Rl), (9.1)

where I(·) denotes the 0-1 indicator function as follows:

I(x ∈ Rl) =


1 if x ∈ Rl

0 otherwise.
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On the other hand, in a classification problem, we assign all x values within
each region Rl into one particular class, as indicated by the different colors
in Figure 9.3.

In the following, we will explore how to automatically learn a decision-tree
model from a given training set of N input–output pairs:

D =
{
(x(n), y(n))

�� n = 1, 2, · · · , N
}
.

Let’s first take regression as an example; we essentially want to build a
decision tree to make sure that the corresponding piece-wise constant
function y = f (x) in Eq. (9.1) minimizes the following empirical loss
measured in the training set:

L( f ; D) =
1
N

N∑
n=1

l
(
y(n), f (x(n))

)
=

1
N

N∑
n=1

(
y(n) − f (x(n))

)2,

where l(·) denotes the loss function, and the square-error loss is used here
for regression. From the foregoing discussion, we know that the function
y = f (x) depends on the space partition shown in Figure 9.2. Generally
speaking, it is computationally infeasible to find the best partition in terms
of minimizing the loss function.

In computer science, a greedy algorithm is
any algorithm that follows some heuris-
tics to make the locally optimal choice at
each stage. Generally speaking, a greedy
algorithm does not produce a globally op-
timal solution, but it may yield a satisfac-
tory solution in a reasonable amount of
time.

In practice, we have to rely on the greedy algorithm to construct the
decision tree in a recursive manner. As we know, based on any particular
binary question xi ≤ tj , we can always split the data set D into two parts
as Dl =

{
(x(n), y(n))

�� x(n)i ≤ tj
}

and Dr =
{
(x(n), y(n))

�� x(n)i > tj
}
, where

x(n)i ≤ tj means that the ith element of the nth input sample x(n) is not larger
than a threshold tj and similarly for x(n)i > tj . As a result, Dl includes all
training samples in Dwhose ith element is not larger than the threshold
tj , and Dr contains the rest.

If we only focus on one split, it is easy for us to find the best binary
question (i.e., x∗i ≤ t∗j ) by solving the following minimization problem:{

x∗i , t∗j
}
= arg min

xi ,tj

[
min
cl

∑
x(n)∈Dl

(
y(n) − cl

)2
+min

cr

∑
x(n)∈Dr

(
y(n) − cr

)2
]
,

where the inner minimization problems can be easily solved by the closed-
form formulae as follows:

c∗l = arg min
cl

∑
x(n)∈Dl

(
y(n) − cl

)2
=⇒ c∗l =

1
|Dl |

∑
x(n)∈Dl

y(n)

c∗r = arg min
cr

∑
x(n)∈Dr

(
y(n) − cr

)2
=⇒ c∗r =

1
|Dr |

∑
x(n)∈Dr

y(n).
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Figure 9.4: An illustration of three split-
ting criteria in building decision trees for
binary classification problems. If p de-
notes the proportion of the first class, we
have:

1. Misclassification error:
1 −max(p, 1 − p).

2. Gini index:
2p(1 − p).

3. Entropy:
−p log p − (1 − p) log(1 − p).

(Image source: [92].)

Therefore, we can further simplify this minimization as{
x∗i , t∗j

}
= arg min

xi ,tj

[ ∑
x(n)∈Dl

(
y(n) − c∗l

)2
+

∑
x(n)∈Dr

(
y(n) − c∗r

)2
]
.

We can simply go over all input elements in x and all possible thresholds
of each element to find out the best question to locally split the data set
into two subsets. The computational complexity is quadratic to the input
dimension d and the total number of thresholds to be considered. If we
place the two split subsets Dl and Dr as two child nodes, we can continue
this process to further split these two child nodes to grow a decision tree
until some termination conditions are met (e.g., some minimum node size
is reached). Finally, in order to alleviate overfitting, we normally use some
cost-complexity criterion (see margin note) to prune the generated tree to
penalize the overly complex structures.

For example, a common cost complexity
measure for regression trees is as follows:

Q( f ; D) =

N∑
n=1

∑
x(n)∈Rl

l(y(n) , f (x(n))︷        ︸︸        ︷(
y(n) − cl

)2

+λ
∑
l

‖cl ‖
2

︸     ︷︷     ︸
L2 norm

+
∑
l

α, (9.2)

where α > 0 denotes a penalty for adding
a new leaf node.
We compute this complexity measure for
every nonterminal node and its two child
nodes. If the sum of the two child nodes
is not less than that of the nonterminal
node, the subtree below this nonterminal
node is simply removed.

For a classification problem involving K classes (i.e.,
{
ω1,ω2, · · · ,ωK

}
),

the recursive tree-building process is also applicable, except that we need
to use a different loss function for splitting the nodes and pruning the tree.
For any leaf node l, representing a region Rl in the input space, we use plk
(for all k = 1, 2, · · · , K) to denote the portion of class k among all training
samples assigned to the node l:

plk =
1
Nl

∑
x(n)∈Rl

I(y(n) = ωk ),

where Nl denotes the total number of training samples assigned to the
region Rl . Once the decision tree is built, we classify all input x in each
region Rl to the majority class as follows:

k∗l = arg max
k

plk .

When we use this recursive procedure to build decision trees for classifica-
tion, the classification rule suggests that we should find the best question
to split the data in such a way that two child nodes are as homogeneous as
possible. In practice, we can use one of the following criteria to measure
the impurity of each node l:

I Misclassification error: 1
Nl

∑
x(n)∈Rl

I(y(n) , ωk∗
l
) = 1 − plk∗

l
.

I Gini index: 1 −
∑K

k=1 p2
lk

.
I Entropy: −

∑K
k=1 plk log plk .

These impurity measures for binary classification problems are plotted
in Figure 9.4. When we build decision trees for classification, at every
step, we should use one of these criteria to find the best question (i.e.,
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{x∗i , t∗j }) that leads to the lowest impurity score summed over two split
child nodes.

9.2 Bagging

Bagging (a.k.a. bootstrap aggregating) [30] is a simple ensemble learning
method designed to improve stability and accuracy for classification and
regression problems. Given a standard training set D, bagging generates
M new subsets, each of which contains B samples, by uniformly sampling
Dwith replacement. By sampling with replacement, some training sam-
ples in Dmay be repeated in several subsets, whereas others may never
appear in any subset. Each subset is called a bootstrap sample in statistics.
Next, we use these M bootstrap samples as separate training sets to inde-
pendently learn M models. In the test stage, we just combine the results
from these M models for the final decision, for example, simply averag-
ing all M results for regression problems or conducting majority-voting
among M classifiers for classification problems.

Bagging is a special case of the model-averaging method that can signif-
icantly reduce the variance in machine learning to alleviate overfitting
when complex models are used, such as neural networks or decision trees.
An advantage of bagging is that the training procedures of all M base
models are totally independent, so bagging can be implemented in paral-
lel across multiple processors. This allows us to efficiently build a large
number of base models in the bagging method.

9.2.1 Random Forests

Random forests [99, 33] are the most popular bagging technique in machine
learning, where we use decision trees as the base models. In other words,
a random forest consists of a large number of decision trees, each of which
is constructed using a bootstrap sample obtained from the previously
described bagging procedure. The success of the bagging method largely
depends on whether or not all base models are diverse enough because
the combined ensemble model will surely yield a similar result if all the
base models are highly correlated. In random forests, we combine the
following techniques to further improve the diversity of all decision trees
that are all learned from the same training set D:

1. Row sampling
We use the bagging method to sample Dwith replacement to gener-
ate a bootstrap sample to learn each decision-tree model.
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2. Column sampling
For each bootstrap sample obtained in step 1, we further sample all
input elements in x to keep only a random subset of features used
for each tree-building step.

3. Suboptimal splitting
We use the random subset from step 2 to grow a decision tree. At each
step, we search for the best question only from a random selection
of all kept features rather than all available features.

As shown in the literature [99, 33], the feature sampling in steps 2 and
3 is crucial for random forests because it can significantly improve the
diversity of all decision trees in a random forest. This is easy to understand:
assuming that the input vector x contains some strong features and other
relatively weak features, no matter how many bootstrap samples we use,
they may all result in some very similar decision trees concentrating on
those strong features alone. By randomly sampling features, we will be
able to take advantage of those weak features in some trees so as to build
a much more diverse ensemble model at the end. Generally speaking,
random forests are a very powerful ensemble learning method in practice
because they can significantly outperform a pure decision-tree method.

9.3 Boosting

In many ensemble learning methods, if we use a linear method to combine
all base models to form the final ensemble model, it is fundamentally
equivalent to learning an additive model, as follows:

Fm(x) = w1 f1(x) + w2 f2(x) + · · · + wm fm(x),

where each base model fm(x) ∈ H is learned from a prespecified model
space H, and wm ∈ R is its ensemble weight. Even when all base models
are chosen from the model space H, the ensemble model Fm(x) does
not necessarily belong to H but, rather, to an extended model space,
denoted as lin(H), that contains all linear combinations of any functions
in H. In general, lin(H) does not equal to H, but we can easily verify
that lin(H) ⊇ H. Furthermore, if we treat the loss function l

(
f (x), y

)
as a

functional in the function space lin(H), the ensemble learning problem can
be viewed as the following functional minimization problem:

The term functional is defined as a func-
tion of functions, which maps any func-
tion in a function space into a real number
in R.

In this case, the functional l
(
f (x), y

)
is

a function of all functions f (·) in lin(H),
and f (·) in turn takes x ∈ Rd as input.

Fm(x) = arg min
f ∈ lin(H)

N∑
n=1

l
(

f (xn), yn
)
.

Boosting [214] is a special ensemble learning method that learns all base
models in a sequential way. At each step, we aim to learn a new base
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model fm(x) and an ensemble weight wm in such a way that it can further
improve the ensemble model Fm−1(x) after being added to the ensemble:

Fm(x) = Fm−1(x) + wm fm(x).

If we can learn each new base model fm(x) and its weight wm in a good
way to guarantee that Fm(x) always outperforms Fm−1(x), we can repeat
this sequential learning process over and over until a very strong ensem-
ble model is finally constructed. This is the basic motivation behind all
boosting techniques. As shown in the literature [214, 68], this boosting idea
turns out to be an extremely powerful machine learning technique because
it can eventually lead to an arbitrarily accurate ensemble model by simply
combining a large number of weak base models. Each base model is said
to be weak because each performs slightly better than random guessing.

In the following, we will first explore the central step in boosting, namely,
how to learn a new base model at each step to ensure the ensemble model
is always improved. Next, we will explore two popular boosting methods,
AdaBoost and gradient-tree boosting, as case studies.

9.3.1 Gradient Boosting

As we know, boosting aims to solve the functional minimization problem
sequentially. The critical issue in boosting is how to choose a new base
model at each step to guarantee that the ensemble model is surely im-
proved after the new base model is added. If we view the loss function

l
(
f (x), y

)
as a functional on a function space, then the gradient

∂l
(
f (x),y

)
∂ f

represents a new function in the function space that points to the direc-
tion of the fastest increase of l

(
f (x), y

)
at f . Following the same idea of

the steepest descent in regular gradient descent methods, the gradient-
boosting method [32, 161, 72] aims to estimate the new base model along
the direction of the negative gradient at the current ensemble Fm−1:

−∇l
(
Fm−1(x)

) ∆
= −

∂l
(
f (x), y

)
∂ f

����
f=Fm−1

However, we normally cannot directly use the negative gradient −∇l
(
Fm(x)

)
as the new base model because it may not belong to the model space H.
The key idea in gradient boosting is to search for a function in H that
resembles the specified gradient the most.

Following Mason et al. [161], we first define an inner product between any
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two functions f (·) and g(·) using all training samples in D, as follows:

〈 f , g〉 ∆=
1
N

N∑
i=1

f (xi)g(xi).

One way to conduct gradient boosting is to search for a base model in H

at each step to maximize the inner product with the negative gradient:

fm = arg max
f ∈H

〈
f ,−∇l

(
Fm−1(x)

) 〉
. (9.3)

The idea of gradient boosting is conceptually shown in Figure 9.5. Roughly
speaking, the new base model fm is estimated by projecting the negative
gradient at Fm−1 into the model space H consisting of all base models.

Figure 9.5: An illustration of using the
gradient-boosting method to estimate a
new base model fm based on the func-
tional gradient at the current ensemble
Fm−1, where we use the contour plot
to display the functional l

(
f (x), y

)
and a

straight line to represent the model space
H.

Alternatively, following Friedman [72, 73], we can also define another
metric between any two functions f (·) and g(·) using D, as follows:

‖ f − g‖2 =
1
N

N∑
i=1

(
f (xi) − g(xi)

)2.

Using this distance metric, we can similarly conduct the gradient boosting
at every step by searching for a base model in H that minimizes the
distance from the negative gradient as follows:

fm = arg min
f ∈H

 f + ∇l
(
Fm−1(x)

) 2

= arg min
f ∈H

N∑
n=1

(
f (xn) + ∇l

(
Fm−1(xn)

) )2
. (9.4)

If we can compute the second-order deriva-
tive of the functional l( f (x), y):

∇2l( f (x)) ∆=
∂2l( f (x), y)

∂ f 2 ,

we can use the Newton method in place
of gradient descent for the gradient boost-
ing [74].
In this case, we estimate a new base model
at each step, as follows:

fm = arg min
f ∈H

 f + ∇l (Fm−1(x)
)

∇2l
(
Fm−1(x)

) 2
.

This method is also called Newton boosting.
Finally, once we have determined the new base model fm using one of
the previously described methods, we can further estimate the optimal
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ensemble weight by conducting the following minimization problem:

wm = arg min
w

N∑
n=1

l
(
Fm−1(xn) + w fm(xn), yn

)
. (9.5)

Next, we’ll use two examples to demonstrate how to solve the minimiza-
tion problems associated with the gradient-boosting method.

9.3.2 AdaBoost

Let us apply the gradient-boosting idea to a simple binary-classification
problem. Assume we are given a training set as

D =
{
(x1, y1), (x2, y2), · · · , (xN , yN )

}
,

where xn ∈ Rd and yn ∈ {−1,+1} for all n = 1, 2, · · · , N . We further assume
that all base models come from a model space H that consists of all binary
functions. In other words, ∀ f ∈ H, f (x) ∈ {−1,+1} for any x.

Moreover, let us use the exponential loss function in Table 7.1 as the loss
functional for any ensemble model F [161, 74], as follows:

l
(
F(x), y

)
= e−yF(x).

Following the idea in Eq. (9.3), at each step, we search for a new base
model in H that maximizes the following inner product:We can derive the gradient for the expo-

nential loss functional as follows:

∇l
(
Fm−1(x)

) ∆
=
∂l

(
f (x), y

)
∂ f

����
f =Fm−1

= −y e−yFm−1(x).

fm = arg max
f ∈H

〈
f ,−∇l

(
Fm−1(x)

) 〉
= arg max

f ∈H

1
N

N∑
n=1

yn f (xn)e−ynFm−1(xn ).

If we denote α
(m)
n

∆
= exp(−ynFm−1

(
xn)

)
for all n at step m and split the

summation based on whether yn = f (xn) holds or not, we haveDue to
yn ∈ {−1,+1}

f (xn) ∈ {−1,+1},

we have

yn f (xn) =


1 if yn = f (xn)

−1 if yn , f (xn).

fm = arg max
f ∈H

[ ∑
yn= f (xn )

α
(m)
n −

∑
yn, f (xn )

α
(m)
n

]
= arg max

f ∈H

[ N∑
n=1

α
(m)
n − 2

∑
yn, f (xn )

α
(m)
n

]
= arg min

f ∈H

∑
yn, f (xn )

α
(m)
n

= arg min
f ∈H

∑
yn, f (xn )

ᾱ
(m)
n .
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In the last step, we normalize all weights as ᾱ(m)n =
α
(m)
n∑N

n=1 α
(m)
n

to ensure they

satisfy the sum-to-1 constraint. This suggests that we should estimate the
new base model fm by learning a binary classifier from H that minimizes
the following weighted-classification-error:

εm =
∑

yn, fm(xn )

ᾱ
(m)
n ,

where we have 0 ≤ εm ≤ 1 because all ᾱ(m)n are normalized.

We can simply learn this binary classifier using a weighted loss function in
place of the regular 0-1 loss function in constructing the learning objective
function, where ᾱ(m)n is treated as the incurred loss when a training sample
(xn, yn) is misclassified at step m for all n = 1, 2, · · · , N .

Once we have learned the new base model fm, we can further estimate its
ensemble weight by solving the minimization problem in Eq. (9.5):

wm = arg min
w

N∑
n=1

e−yn
(
Fm−1(xn )+w fm(xn )

)
.

By vanishing the derivative of this objective function, we can derive the
closed-form solution to estimate wm (see margin note), as follows:

wm =
1
2

ln
(∑

yn= fm(xn )
ᾱ
(m)
n∑

yn, fm(xn )
ᾱ
(m)
n

)
=

1
2

ln
(

1 − εm
εm

)
.

Em =

N∑
n=1

e−yn

(
Fm−1(xn )+w fm (xn )

)
=

N∑
n=1

α
(m)
n e−yn w fm (xn )

=
∑

yn= fm (xn )

α
(m)
n e−w

+
∑

yn, fm (xn )

α
(m)
n ew .

dEm

dw
= ew

∑
yn, fm (xn )

α
(m)
n

− e−w
∑

yn= fm (xn )

α
(m)
n .

dEm

dw = 0 =⇒

wm =
1
2

ln
(∑

yn= fm (xn )
α
(m)
n∑

yn, fm (xn )
α
(m)
n

)
=

1
2

ln
(∑

yn= fm (xn )
ᾱ
(m)
n∑

yn, fm (xn )
ᾱ
(m)
n

)
.Algorithm 9.10 AdaBoost

Input:
{
(x1, y1), · · · , (xN , yN )

}
, where xn ∈ Rd and yn ∈ {−1,+1}

Output: an ensemble model Fm(x)

m = 1 and F0(x) = 0
initialize ᾱ(1)n = 1

N for all n = 1, 2, · · · , N
while not converged do

learn a binary classifier fm(x) to minimize εm =
∑

yn, fm(xn )
ᾱ
(m)
n

estimate ensemble weight: wm =
1
2 ln

(
1−εm
εm

)
add to ensemble: Fm(x) = Fm−1(x) + wm fm(x)
update ᾱ(m+1)

n =
ᾱ
(m)
n e−ynwm fm (xn )∑N

n=1 ᾱ
(m)
n e−ynwm fm (xn )

for all n = 1, 2, · · · , N .

m = m + 1
end while

By definition

ᾱ
(m+1)
n =

α
(m+1)
n∑N

n=1 α
(m+1)
n

,

where we have

α
(m+1)
n = exp(−ynFm(xn))

= exp
(
− yn

(
Fm−1(xn) +wm fm(xn)

) )
= α

(m)
n exp

(
− ynwm fm(xn)

)
.

If we repeat this process to sequentially estimate each base model and its
ensemble weight and add them to the ensemble model one by one, it leads
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to the famous AdaBoost (a.k.a. adaptive boosting) algorithm [68], which is
summarized in Algorithm 9.10. The AdaBoost is a general meta-learning
algorithm because we can flexibly choose any binary classifiers as the base
models. At each iteration, a binary classifier is learned by minimizing a
weighted error on the training set, where each training sample is weighted
by an adaptive coefficient ᾱ(m)n .

The AdaBoost algorithm has shown some nice properties in theory. For ex-
ample, we have the following theorem regarding the convergence property
of the AdaBoost algorithm:

Theorem 9.3.1 Suppose the AdaBoost Algorithm 9.10 generates m base models
with errors ε1, ε2, · · · , εm; the error of the ensemble model Fm(x) is bounded as
follows:

ε ≤ 2m
m∏
t=1

√
εt (1 − εt ).

This theorem implies another important property of the AdaBoost algo-
rithm, which can be viewed as a general learning algorithm to combine
many weak classifiers toward a strong classifier. Even though we can only
estimate a weak classifier at each iteration, as long as it performs better
than random guessing (i.e., εt , 1

2 ), the AdaBoost algorithm is guaranteed
to yield an arbitrarily strong classifier when m is sufficiently large (i.e.,
ε → 0 as m→∞).

In addition to this nice convergence property on the training data, many
empirical results have shown that the AdaBoost algorithm generalizes
very well into new, unseen data. In many cases, it has been found that
AdaBoost can continue to improve the generalization error even after the
training error has reached 0. A theoretical analysis [215] suggests that
AdaBoost can continuously improve the margin distribution of all training
samples, which may prevent AdaBoost from overfitting when more and
more base models are added to the ensemble even after the training error
has reached 0.

9.3.3 Gradient Tree Boosting

Here, let us look at how to apply the gradient boosting idea to regression
problems, where we use decision trees as the base models in the ensemble.
Assuming that we use the square error as the loss functional l( f (x), y) =
1
2 ( f (x) − y)2, we can compute the functional gradient at the ensemble
model Fm−1(x), as follows:

∇l
(
Fm−1(x)

)
= Fm−1(x) − y.
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Based on the idea in Eq. (9.4), we just need to build a decision tree fm to
fit to the negative gradients for all training samples. This can be easily
achieved by treating each negative gradient yn − Fm−1(xn), also called the
residual, as a pseudo-output for each input vector xn. We can run the
greedy algorithm to fit to these pseudo-outputs so as to build a regression
tree fm(x), given as

y = fm(x) =
∑
l

cml I(x ∈ Rml),

where cml is computed as the mean of all residuals belonging to the region
Rml , which corresponds to the lth leaf node of the decision tree built for
fm(x). This method is often called gradient tree boosting, the gradient-boosting
machine (GBM), or a gradient-boosted regression tree (GBRT) [72–74, 42].

In the gradient-tree-boosting methods, we usually do not need to conduct
another optimization in Eq. (9.5) to estimate the ensemble weight for each
tree. Instead, we just use a preset "shrinkage" parameter ν to control the
learning rate of the boosting procedure, as follows:

In statistics, shrinkage refers to a method
to reduce the effects of sampling varia-
tion.

Fm(x) = Fm−1(x) + ν fm(x).

It has been empirically found that small values (0 < ν ≤ 0.1) often lead
to much better generalization errors [73]. Finally, we can summarize the
gradient-tree-boosting algorithm as shown in Algorithm 9.11.

Algorithm 9.11 Gradient Tree Boosting

Input:
{
(x1, y1), · · · , (xN , yN )

}
Output: an ensemble model Fm(x)

fit a regression tree f0(x) to
{
(x1, y1), · · · , (xN , yN )

}
F0(x) = ν f0(x)
m = 1
while not converged do

compute the negative gradients as pseudo-outputs:
ỹn = −∇l

(
Fm−1(xn)

)
for all n = 1, 2, · · · , N

fit a regression tree fm(x) to
{
(x1, ỹ1), · · · , (xN , ỹN )

}
Fm(x) = Fm−1(x) + ν fm(x)
m = m + 1

end while

The gradient-tree-boosting method can be easily extended to other loss
functions for regression problems; see Exercise Q9.4. Moreover, we can also
extend the gradient-tree-boosting procedure to classification problems,
where an ensemble model is built for each class. See Exercise Q9.5 for
more details on this.
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Lab Project V

In this project, you will implement several tree-based ensemble learning methods for regression and classifica-
tion. You may choose to use any programming language for your own convenience. You are only allowed to
use libraries for linear algebra operations, such as matrix multiplication, matrix inversion, matrix factorization,
and so forth. You are not allowed to use any existing machine learning or statistics toolkits or libraries or any
open-source codes for this project.

In this project, you will use the Ames Housing Dataset [44] available at Kaggle (https://www.kaggle.com/c/
house-prices-advanced-regression-techniques/overview), where each residential home is described by 79
explanatory variables on (almost) every aspect of a house. Your task is to predict the final sale price of each
home as a regression problem or predict whether each home is expensive or not as a binary-classification
problem (a home is said to be expensive if its sale price exceeds $150,000).

a. Use the provided training data to build a regression tree to predict the sale price. Report your best result
in terms of the average square error on the test set. Use the provided training data to build a binary
classification tree to predict whether each home is expensive or not. Report your best result in terms of
classification accuracy on the test set.

b. Use the provided training data to build a random forest to predict the sale price. Report your best result
in terms of the average square error on the test set.

c. Use the AdaBoost Algorithm 9.10 to build an ensemble model to predict whether each home is expensive
or not, where you use binary classification trees as the base models. Report your best result in terms of
classification accuracy on the test set.

d. Use the gradient-tree-boosting Algorithm 9.11 to learn an ensemble model to predict the sale price. Report
your best result in terms of the average square error on the test set.

e. Use the gradient-tree-boosting method in Exercise Q9.5 to build an ensemble model to predict whether
each home is expensive or not. Report your best result in terms of classification accuracy on the test set.

https://www.kaggle.com/c/house-prices-advanced-regression-techniques/overview
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/overview
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Exercises

Q9.1 In the AdaBoost Algorithm 9.10, assume we have learned a base model fm(x) at step m that performs
worse than random guessing (i.e., its error εm > 1

2 ). If we simply flip it to f̄m(x) = − fm(x), compute the
error for f̄m(x) and its optimal ensemble weight. Show that it is equivalent to use either fm(x) or f̄m(x) in
AdaBoost.

Q9.2 In AdaBoost, we define the error for a base model fm(x) as εm =
∑

yn, fm(xn )
ᾱ
(m)
n . We normally have εm < 1

2 .
We then reweight the training samples for the next round as

ᾱ
(m+1)
n =

ᾱ
(m)
n e−ynwm fm(xn )∑N

n=1 ᾱ
(m)
n e−ynwm fm(xn )

∀n = 1, 2, · · · , N .

Compute the error of the same base model fm(x) on the reweighted data, that is,

ε̃m =
∑

yn, fm(xn )

ᾱ
(m+1)
n ,

and explain how ε̃m differs from the εm+1 that will be computed in the next round.

Q9.3 Derive the logitBoost algorithm by replacing the exponential loss in AdaBoost with the logistic loss:
l
(
F(x), y

)
= ln

(
1 + e−y F(x)

)
.

Q9.4 Derive the gradient-tree-boosting procedure for regression problems when the following loss functionals
are used:

a. The least absolute deviation:
l
(
F(x), y

)
=

��y − F(x)
��.

b. The Huber loss:

l(F(x), y) =


1
2
(
y − F(x)

)2 if |y − F(x)| ≤ δ

δ |y − F(x)| − δ2

2 otherwise.

Q9.5 In a classification problem of K classes (i.e., {ω1,ω2, · · · ,ωK }), assume that we use an ensemble model for
each class ωk (for all k = 1, 2, · · · , K) as follows:

Fm(x; ωk ) = f1(x; ωk ) + f2(x; ωk ) + · · · + fm(x; ωk ),

where each base model fm(x;ωk ) is a regression tree. Derive the gradient-tree-boosting procedure to
estimate the ensemble models for all K classes by minimizing the following cross-entropy loss functional:

l
(
F(x), y

)
= − ln

[
eF(x; y)∑K

k=1 eF(x;ωk )

] (
y ∈ {ω1,ω2, · · · ,ωK }

)
.

Q9.6 Derive the gradient-tree-boosting procedure using Newton boosting for a twice-differentiable loss func-
tional l

(
F(x), y

)
. Assume that we use the L2 norm term and the penalty α per node in Eq. (9.2) as two extra

regularization terms together with the loss functional.
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In the preceding chapters, we thoroughly discussed discriminative models
in machine learning. In this chapter and onward, we will switch gears and
explore another important school of machine learning models, namely,
generative models. This chapter first introduces how generative models fun-
damentally differ from discriminative models in machine learning and then
gives readers a roadmap for various generative modeling topics to be
discussed in the upcoming chapters.

10.1 Formulation of Generative Models

Section 5.1 introduced the formal definition of discriminative models and
also discussed a general formulation for learning discriminative models
in pattern-classification problems. As we have seen, discriminative mod-
els can be viewed as a system that takes feature vectors x as input and
generates target labels y as output (see margin note), where the input x
is a random vector following an unknown distribution p(x), and the rela-
tion between the input x and the output y is deterministic, specified by an
unknown target function y = f̄ (x).

ML model
x y

The goal in learning a discriminative
model is to estimate the unknown target function within a prespecified
model space based on some training samples of input–output pairs that
are generated by this system.

Similar to discriminative models, a generative model can also be viewed
as a system that takes feature vectors x as input and generates target labels
y as output. However, the noticeable differences in generative models
include the following:

1. Both x and y are random variables.
2. The relation between x and y is not deterministic but stochastic.

In other words, the output y cannot be completely determined by the
corresponding input x. The underlying system involves some randomness
that may generate different outputs even for the same input. In this case,
the relation between x and y must be specified by a joint probability
distribution between them (i.e., p(x, y)).

Here, let us first use a simple example to elucidate the key difference
between deterministic and stochastic relations.
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generative modelx y

Figure 10.1: An illustration of a genera-
tive model in machine learning that is
used to model the joint distribution of
input and output (i.e., p(x, y)).

Example 10.1.1 Deterministic versus Stochastic

1. Assume the system is linear (i.e., y = wᵀx), where the parameter
w is unknown but fixed. In this case, the relation between x and y

is deterministic. If we feed the same input, we always receive the
same output even if we do not know it is a linear system.

2. Assume the output is corrupted by an independent Gaussian
noise: y = wᵀx + ε , where ε ∼ N(0, 1). In this case, the relation
between x and y is stochastic. Even when we feed the same input
to the system, the output may differ due to the additive noise.

3. Assume the parameter of this linear system (i.e., w) is not a fixed
value but a random vector following a probability distribution
(i.e., w ∼ p(w)). In this case, the relation between x and y is also
stochastic because w takes a different value at a different time. �

The discriminative models that we have discussed in the preceding chap-
ters make sense only when the relation between x and y is deterministic.
This is because only under this condition are those loss functions used
to formulate the learning objectives, such as squared error, 0-1 loss, and
margin, actually meaningful. When both x and y are random variables
and their relation is stochastic, the mathematical tool we have to use to
model them is their joint probability distribution: p(x, y). All generative
models essentially aim to model this joint distribution.

When generative models are used for a machine learning problem, as in
Figure 10.1, both x and y are random variables specified by a joint distri-
bution p(x, y). The machine learning problem is normally formulated as
follows: when we observe a realization of the input variable as x0, we want
to make the best guess or estimate of the random output y conditioning on
the input x0. Depending on whether the output y is discrete or continuous,
the underlying problem is a classification or regression problem.

Of course, the joint distribution p(x, y) is always unknown in practice. In
the next section, let us first consider some ideal cases for generative models
where the joint distribution p(x, y) is given. As suggested by the well-
known Bayesian decision theory, once the joint distribution p(x, y) is known,
the optimal solution to estimate the output y based on any particular input
x0 can be derived in a fairly simple way. As we will see, this theoretical
result also turns the central issue in generative models into how to estimate
this joint distribution if it is unknown.

10.2 Bayesian Decision Theory

Bayesian decision theory is concerned with some ideal scenarios for gen-
erative models where the joint distribution between the input and output
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generative modelx y = ωk

Figure 10.2: An illustration of a genera-
tive model for classification.

Figure 10.3: An illustration of two class-
conditional distributions for classes ω1
and ω2 when the input feature x is a real
value.

p(x, y) is given. It indicates how to make the optimal estimate for the corre-
sponding output for any particular input in Figure 10.1 based on the given
joint distribution. Bayesian decision theory forms an important theoretical
foundation for generative models. In the following, we will explore the
Bayesian decision theory for two important machine learning problems,
that is, classification and regression, separately.

10.2.1 Generative Models for Classification

When a generative model is used for a pattern-classification problem, as
in Figure 10.2, the input feature vector x may be continuous or discrete or
even a combination of the two, but the output y must be a discrete random
variable. In a K-class classification, we assume y is a discrete random
variable, taking a value out of K finite values, {ω1,ω2, · · · ,ωK }, each of
which corresponds to a class label.

According to probability theory, the joint distribution p(x, y) can be broken
down into two terms:

p(x, y) = p(y)p(x|y). (10.1)

Because y is discrete, these two terms can be further simplified as fol-
lows:

I p(y) as the prior probabilities of all K classes:

p(y = ωk )
∆
= Pr(ωk ) (∀k = 1, 2, · · · , K),

where Pr(ωk ) indicates the probability for class ωk to occur prior to
observing any data, so it is normally called the prior probability of
class ωk .

I p(x|y) as the class-conditional distributions of all K classes:

p(x | y = ωk )
∆
= p(x | ωk ) (∀k = 1, 2, · · · , K),

where the class-conditional distribution p(x | ωk ) indicates how all
data from class ωk are distributed in the feature space, as shown in
Figure 10.3.

Because both priors Pr(ωk ) and class-conditional distributions p(x |ωk ) are
valid probability distributions, they satisfy the sum-to-1 constraints. For
all prior probabilities, we have

K∑
k=1

Pr(ωk ) = 1.
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Figure 10.4: Each decision rule corre-
sponds to a partition of the input feature
space, where a color indicates a distinct
Ok . Note that each Ok may consist of
many disconnected pieces in the space.

For the class-conditional distributions, if the input feature vector x is
continuous, we have∫

x
p(x | ωk )dx = 1 (∀k = 1, 2, · · · , K).

Otherwise, if x is discrete, we have∑
x

p(x | ωk ) = 1 (∀k = 1, 2, · · · , K).

In a pattern-classification problem, such as that shown in Figure 10.2,
for any input feature x, we try to use a generative model to estimate the
corresponding class label ωk . This procedure can be viewed as a decision
rule g(x) that maps any feature vector x into a class in {ω1,ω2, · · · ,ωK }:

g(x) : x 7→ ωk (∀k = 1, 2, · · · , K).

Also, it is easy to see that a decision rule g(x) partitions the feature space
into K disjoint regions, denoted as O1, O2, · · · , OK , as shown in Figure 10.4.
For all x ∈ Ok (k = 1, 2, · · · , K), it implies g(x) = ωk . Different decision
rules partition the same input feature space in different ways.

For any classification problem, the key question is how to construct the
optimal decision rule that leads to the lowest classification error. According
to Bayesian decision theory, the optimal decision rule can be constructed
based on a conditional probability, as follows:Based on Bayes’s theorem:

p(ωk |x) =
p(y = ωk , x)

p(x)

=
Pr(ωk ) · p(x |ωk )

p(x)
,

where the denominator p(x) can be dropped
because it is independent of k.

g∗(x) = arg max
k

p(ωk |x)

= arg max
k

Pr(ωk ) · p(x|ωk ), (10.2)

where p(ωk |x) indicates the probability of class ωk after x is observed and
is thus called the posterior probability of class ωk . As a result, this optimal
decision rule g∗(x) is often called the maximum a posteriori (MAP) decision
rule or the Bayes decision rule.

The MAP decision rule is fairly simple to understand. Given any input
feature x0, we use the prior probabilities Pr(ωk ) and class-conditional distri-
butions p(x |ωk ) to compute the posterior probabilities for all K classes:

p(ω1 |x0), p(ω2 |x0), . . . , p(ωK |x0),

and then the input x0 is assigned to the class that achieves the maximum
posterior probability.

Regarding the optimality of the MAP decision rule, we have the following
theorem:
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Theorem 10.2.1 (Classification) Assuming p(x,ω) is known and ω is dis-
crete, if x is used to predict ω as in pattern classification, the MAP rule in Eq.
(10.2) leads to the lowest expected risk (using 0-1 loss).

Note that the MAP rule is optimal in terms
of the expected risk, not the empirical loss as
in discriminative models.

Proof:

Because ω is discrete, this corresponds to a pattern-classification problem.
In this case, we measure the expected risk using the 0-1 loss function:

l(ω,ω′) =


0 when ω = ω′

1 otherwise.

We know p(x,ω) is the joint distribution of any x and its corresponding
correct class label ω. For any decision rule g(x): x→ g(x) ∈

{
ω1, · · · ,ωK

}
,

we compute its expected risk as follows:

Note that

p(x,ωk ) = p(x)p(ωk |x)

R(g) = Ep(x,ω)

[
l
(
ω, g(x)

) ]
=

∫
x

∑
ω

l
(
ω, g(x)

)
p(x,ω)dx

=

∫
x

K∑
k=1

l
(
ωk , g(x)

)
p(x,ωk )dx

=

∫
x

[ K∑
k=1

l
(
ωk , g(x)

)
p(ωk |x)

]
︸                           ︷︷                           ︸∑

ωk,g(x) p(ωk |x)

p(x)dx.

l
(
ωk , g(x)

)
=


0 ωk = g(x)

1 ωk , g(x).

Because all posterior probabilities satisfy
∑K

k=1 p(ωk |x) = 1, we have∑
ωk,g(x)

p(ωk |x) = 1 − p
(
g(x)|x

)
.

After substituting into the previous equation, we derive

R(g) =
∫

x

[
1 − p

(
g(x)|x

) ]
p(x)dx.

It is easy to see from this integral that if we can minimize 1 − p
(
g(x)|x

)
for each x separately, we will minimize the expected risk R(g) as a whole.
Thus, we need to choose g(x) in such a way to maximize p

(
g(x)|x

)
for each

x. Because g(x) ∈
{
ω1, · · · ,ωK

}
, p

(
g(x)|x

)
is maximized by choosing

g∗(x) = arg max
k

p(ωk |x). �

In this proof, we have managed to prove Theorem 10.2.1 without explicitly
computing the expected risk R(g). In a pattern-classification problem, this
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Figure 10.5: The error probability is
shown for a simple two-class case. The
reducible error can be eliminated by ad-
justing the decision boundary from x∗ to
xB , which represents the MAP decision
rule yielding the lowest error probability,
that is, the Bayes error. (Source: [57].)

expected risk essentially represents the probability of classification error,
which may be a good performance indicator for the underlying classifier.
Here, we will further investigate how to compute R(g) for classification.
As we have seen in Figure 10.4, any decision rule g(x) partitions the entire
feature space into K regions: O1, O2, · · · , OK , each corresponding to a class.
Thus, we have the following:

R(g) = Pr(error) = 1 − Pr(correct)

= 1 −
K∑
k=1

Pr(x ∈ Ok ,ωk )

= 1 −
K∑
k=1

Pr(ωk )

∫
x∈Ok

p(x|ωk )dx. (10.3)

Pr(x ∈ Ok ,ωk ) represents the probability
of a pattern x falling inside the region Ok

and, at the same time, its correct label hap-
pening to beωk . By definition, we classify
all x ∈ Ok into ωk . Thus, Pr(x ∈ Ok ,ωk )

stands for the correct classification proba-
bility for class ωk .

Among all possible decision rules, the MAP decision rule g∗(x) yields the
lowest classification-error probability R(g∗), which is also called the Bayes
error. As shown in Figure 10.5, an arbitrary decision rule always contains
some reducible error, which can be eliminated by adjusting the decision
boundary. The Bayes error corresponds to the minimum nonreducible
error inherent in the underlying problem specification.

Of course, the integrals in Eq. (10.3) cannot be easily calculated even for
many simple cases because of the discontinuous nature of the decision
regions in the integral. We normally have to rely on some upper or lower
bounds to analyze the Bayes error [93]. Another common approach used
in practice is to empirically evaluate R(g) using an independent test set.

Here, let us first use a simple example to further explore how to derive the
MAP decision rule for some cases where the joint distribution can be fully
specified. In the following example, we consider a two-class classification
problem that only involves independent binary features:

Example 10.2.1 Classification with Independent Binary Features

Assume the prior probabilities for two classes (ω1 and ω2) are denoted
as Pr(ω1) and Pr(ω2). We assume every sample can be evaluated by d
binary questions. Based on the answers to these questions (yes/no),
each sample can be represented by d independent binary (0 or 1) fea-
tures, denoted as x =

[
x1, x2, · · · , xd

]ᵀ, where xi ∈ {0, 1},∀i = 1, 2, · · · , d.
Derive the MAP decision rule for these two classes.

First of all, Pr(xi = 1|ω1)means the probability of answering yes to the ith
question for any sample in class ω1, which is denoted as αi

∆
= Pr(xi = 1|ω1).

The probability of answering no to the ith question for any sample in class
ω1 must be 1 − αi because all questions are binary (yes/no). Similarly, for
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generative modelx y

Figure 10.6: Use of generative models for
regression.

any sample in ω2, we denote the probability of answering yes to the ith
question as βi

∆
= Pr(xi = 1|ω2). In the same way, for any sample in ω2, the

probability of answering no equals to 1− βi . Given any x, because all these
features are independent, we have the following Bernoulli distribution for
each class: As we know xi ∈ {0, 1}, we can verify:

αxi

i (1 −αi )
1−xi

=


αi if xi = 1

1 −αi if xi = 0.

p(x|ω1) =

d∏
i=1

αxi
i (1 − αi)

1−xi

p(x|ω2) =

d∏
i=1

βxii (1 − βi)
1−xi .

The MAP rule can be constructed as follows: x is classified as ω1 if

Pr(ω1) · p(x|ω1) ≥ Pr(ω2) · p(x|ω2),

and otherwise as ω2. If we take the logarithm of both sides, we can derive
the MAP rule as a linear decision boundary as follows:

g(x) =
d∑
i=1

λi xi + λ0 =


≥ 0 =⇒ ω1

< 0 =⇒ ω2,

where we have λi = ln αi (1−βi )
βi (1−αi )

, and λ0 =
∑d

i=1 ln 1−αi

1−βi + ln Pr(ω1)
Pr(ω2)

. �

Note that this linear classification boundary naturally arises from Bayesian
decision theory because of the property of the underlying features. This is
quite different from those cases in Chapter 6, where we have assumed the
linearity of models in the first place.

10.2.2 Generative Models for Regression

If generative models are used for a regression problem, as in Figure 10.6,
the output y is continuous (assuming x ∈ Rd and y ∈ R). Similar to
previously, both x and y are random variables, and we assume their joint
distribution is given as p(x, y). As in a standard regression problem, if we
have observed an input sample as x0, we try to make the best estimate for
the corresponding output y.

Again, Bayesian decision theory suggests that the best decision rule for
this regression problem is to use the following conditional mean:

As we recall, this conditional distribution
can be easily derived from the given joint
distribution p(x, y):

p(y |x0) =
p(x0, y)
p(x0)

=
p(x0, y)∫

y
p(x0, y) dy

.

g∗(x0) = E(y |x0) =

∫
y

y · p(y |x0) dy.

Also, we have the following theorem to justify the optimality of using this
conditional mean for regression:
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Theorem 10.2.2 (Regression) Assuming p(x, y) is known and y is contin-
uous, when x is used to predict y, the conditional mean E(y |x) leads to the
lowest expected risk (using mean-square loss).

Proof:

Because we use the square loss function (i.e., l(y, y′) = (y − y′)2) for any
regression problem, the expected risk of any rule x→ g(x) ∈ R:

R(g) = Ep(x,y)

[
l
(
y, g(x)

) ]
=

∫
x

∫
y

(
y − g(x)

)2
p(x, y) dxdy

=

∫
x

[ ∫
y

(
y − g(x)

)2
p(y |x)dy

]
︸                            ︷︷                            ︸

Q(g |x)

p(x)dx.

Because p(x) > 0, if we can minimize Q(g |x) for each x, we will minimize
R(g) as a whole. Here, we compute the partial derivative of Q(g |x) with
respect to (w.r.t.) g and vanish it as follows:

∂Q(g |x)
∂g(·)

= 0 =⇒
∫
y

(
g(x) − y

)
p(y |x)dy = 0

=⇒ g∗(x) =
∫
y

y · p(y |x)dy = E(y |x). �

10.3 Statistical Data Modeling

As we have learned from Bayesian decision theory, as long as the true joint
distribution p(x, y) is given, the optimal decision rule only depends on the
conditional distribution, which can be easily derived from the given joint
distribution. However, in any practical situation, the true joint distribution
p(x, y) is never known to us. Normally, we do not even know the functional
form of the true distribution, not to mention the true distribution itself.
Therefore, the optimal Bayes decision rule is not feasible in practice. In
this section, we will explore how to make the best possible decision under
realistic scenarios where we do not have access to the true joint distribution
of the input and output random variables. Afterward, we will consider
pattern classification as an example to explain the approach, but the idea
can be easily extended to other machine learning problems.
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Figure 10.7: An illustration of the plug-
in MAP decision rule that relies on two
probabilistic models (shown in red) used
to approximate the unknown true data
distributions, which may be complicated.

10.3.1 Plug-In MAP Decision Rule

In practice, we usually have no idea of the true joint distribution p(x, y), but
it is possible for us to collect some training samples out of this unknown
distribution. Let us denote all training samples as

DN =
{
(x1, y1), (x2, y2), · · · , (xN , yN )

}
,

each of which is a random sample drawn from this unknown distribution,
that is, (xi , yi) ∼ p(x, y) (∀i = 1, 2, · · · , N). In practice, the key question
we are facing is not how to construct the optimal decision based on the
unknown joint distribution but how to make the best decision based on the
finite set of training samples that are assumed to be randomly drawn from
this distribution. The common approach is called statistical data modeling.
In other words, we first choose some parametric probabilistic models to
approximate the unknown true distribution, and then we estimate all
associated parameters using the collected training samples. Once this is
done, we substitute the estimated statistical models into the optimal MAP
decision rule as if it were the true data distribution, which results in the so-
called plug-in MAP decision rule [80, 81, 104]. As illustrated in Figure 10.7,
the unknown data distributions are first approximated by some simpler
probabilistic models (shown in red), and then the plug-in MAP decision
rule is derived by substituting these estimated probabilistic models into
the optimal Bayes decision rule. These probabilistic models are also called
generative models or statistical models under this context. Hereafter, this book
will use these three terms interchangeably, and all of them represent the
parametric probabilistic models chosen to approximate the unknown true
data distributions.

Here, we will use pattern classification as an example to elucidate how the
plug-in MAP decision rule differs from the optimal MAP rule derived from
the Bayesian decision theory. As shown in Eq. (10.2), the optimal MAP
decision rule for a K-class classification problem relies on the posterior
probabilities, p(ωk |x) (∀k = 1, 2 · · ·K), which can be computed from the
prior probabilities Pr(ωk ) and the class-conditional distributions p(x|ωk )

(∀k = 1, 2 · · ·K). In practice, because we have no access to the true probabil-
ity distributions Pr(ωk ) and p(x|ωk ), we use some parametric probabilistic
models to approximate them as follows:

Pr(ωk ) ≈ p̂λ(ωk )

p(x|ωk ) ≈ p̂θk (x) (∀k = 1, 2 · · ·K),

where Λ =
{
λ, θ1, · · · , θK

}
denotes the model parameters of the chosen

probabilistic models. The chosen models specify the functional form for
the distributions. Furthermore, if we can estimate all model parameters Λ
based on the collected training samples DN , these estimated probabilistic



230 10 Overview of Generative Models

models can serve as an approximation to the unknown true distributions.
The plug-in MAP decision rule is derived by substituting these estimated
models in place of the true data distribution in the optimal Bayes decision
rule as follows:

ĝ(x) = arg max
k

p̂λ(ωk )p̂θk (x). (10.4)

The plug-in MAP rule ĝ(x) is fundamentally different from the optimal
MAP rule g∗(x) because ĝ(x) is not guaranteed to be optimal. However, as
shown by Glick [80], if the chosen probabilistic models are a consistent
and unbiased estimator of the true distribution, the plug-in MAP rule ĝ(x)
will converge to the optimal MAP decision rule g∗(x) almost surely as the
training sample size N increases (N →∞).

An estimator is said to be consistent if it
converges in probability to the true value
as the number of data points used increases
indefinitely.

The key steps in the statistical data-modeling procedure for pattern classi-
fication discussed thus far can be summarized as follows:

Statistical Data Modeling

Assume we have collected some training samples:

DN =
{
(x1, y1), · · · , (xN , yN )

}
,

where each (xi , yi) ∼ p(x, y) (∀i = 1, 2, · · · , N).

1. Choose some probabilistic models:

Pr(ωk ) ≈ p̂λ(ωk )

p(x|ωk ) ≈ p̂θk (x) (∀k = 1, 2, · · · , K).

2. Estimate the model parameters:

DN −→
{
λ, θ1, · · · , θK

}
.

3. Apply the plug-in MAP rule:

ĝ(x) = arg max
k

p̂λ(ωk ) · p̂θk (x).

Among these three steps, the plug-in MAP rule is fairly straightforward to
formulate once the chosen probabilistic models are estimated. The central
issues here are how to choose the appropriate generative models for the
underlying task and how to estimate the unknown model parameters in
an effective way. Section 10.4 introduces how to estimate parameters for
the chosen generative models, and Section 10.5 explains the basic principle
behind choosing proper models for the underlying problems and provides
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an overview of some important model classes for generative modeling.
These models will be further investigated in the following chapters as
several major categories: unimodal models in Chapter 11, mixture models
in Chapter 12, entangled models in Chapter 13, and more general graphical
models in Chapter 15.

10.4 Density Estimation

As we have seen in the discussion of the statistical data-modeling proce-
dure, before we can apply the plug-in MAP decision rule, the fundamental
problem is how to estimate the unknown data distribution based on a
finite set of training samples that are presumably drawn from this distribu-
tion. This corresponds to a standard problem in statistics, namely, density
estimation. As we have seen, we normally take the so-called parametric
approach to this problem. In other words, we first choose some parametric
probabilistic models, and then the associated parameters are estimated
from the finite set of training samples. The advantage of this approach is
that we can convert an extremely challenging problem of density estima-
tion into a relatively simple parameter-estimation problem. By estimating
the parameters, we find the best fit to the unknown data distribution in the
family of some prespecified generative models. Similar to discriminative
models, parameter estimation for generative models can also be formu-
lated as a standard optimization problem. The major difference here is
that we need to rely on different criteria to construct the objective function
for generative models. In the following, we will explore the most popular
method for parametric density estimation, namely, maximum-likelihood
estimation (MLE).

10.4.1 Maximum-Likelihood Estimation

Assume that we are interested in estimating an unknown data distribution
p(x) based on some samples randomly drawn out of this distribution; that
is, DN =

{
x1, x2 · · · , xN

}
, where each sample xi ∼ p(x) (∀i = 1, 2 · · · , N).

An important assumption in density estimation is that we assume these
samples are independent and identically distributed (i.i.d.), which means
that all these samples are drawn from the same probability distribution,
and all of them are mutually independent. As we will see later, the i.i.d.
assumption will significantly simplify the parameter-estimation problem
in density estimation. In a parametric density-estimation method, we first
choose a probabilistic model, p̂θ(x), to approximate this unknown distri-
bution p(x), where θ denotes the parameters of the chosen model. The
unknown model parameters θ are then estimated from the collected train-
ing samples DN . The most popular method for this parameter estimation
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problem is the so-called MLE. The basic idea of MLE is to estimate the
unknown parameters θ by maximizing the joint probability of observing
all training samples in DN based on the presumed probabilistic model.
That is,

θMLE = arg max
θ

p̂θ(DN )

= arg max
θ

p̂θ(x1, x2, · · · , xN )

= arg max
θ

N∏
i=1

p̂θ(xi). (10.5)

The last step is based on the i.i.d. assump-
tion, which indicates that all training sam-
ples are mutually independent.

The objective function p̂θ(x1, x2, · · · , xN ) is conventionally called the like-
lihood function (see margin note for why).For any probabilistic model p̂θ (x):

a. If the model parameters θ are given
and fixed, p̂θ (x) is viewed as a func-
tion of x. In this case, it is a proba-
bility function over the entire fea-
ture space, where p̂θ (x) roughly in-
dicates the probability of observ-
ing each x. It satisfies the sum-to-1
constraint for all x:∫

x
p̂θ (x) dx = 1.

b. If x is fixed, p̂θ (x) is viewed as a
function of model parameters θ,
conventionally called the likelihood
function. Note that the likelihood
function does not satisfy the sum-
to-1 constraint for all θ values in
the model space, that is,∫

θ
p̂θ (x) dθ , 1.

Intuitively speaking, MLE
searches for the best model in the prespecified model family to fit the
given training samples, and it provides the most likely interpretation of
the observed samples. Among all density-estimation methods, MLE is the
most popular approach because it always leads to the simplest solution.
Furthermore, MLE also has some nice theoretical properties. For example,
MLE is theoretically shown to be consistent, which means that if the model
p̂θ(x) is correct (i.e., the samples are truly generated by the underlying
model), then the MLE solution converges to its true value as we have more
and more samples.

In many cases, it is more convenient to work with the logarithm of the
likelihood function rather than the likelihood function itself. If we denote
the log-likelihood function as

l(θ) = ln pθ(DN ) =

N∑
i=1

ln pθ(xi),

we can equivalently write the MLE as follows:

θMLE = arg max
θ

l(θ)

= arg max
θ

N∑
i=1

ln pθ(xi). (10.6)

Note that the maximum-likelihood formulations in Eqs. (10.5) and (10.6)
are equivalent because the logarithm function is a monotonically increas-
ing function that does not change where the optimal points of the objective
function occur. For some simple probabilistic models, the optimization
problem in Eq. (10.6) can be easily solved with the differential calculus or
the method of Lagrange multipliers. For other popular generative models,
such as mixture models and graphical models, we can use some special
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optimization methods (e.g., the expectation-maximization (EM) method; see
Section 12.2), which are much more efficient than generic gradient-descent
methods for these models. We will come back to these methods in the later
chapters.

Here, let us use a simple example to show how to derive a closed-form
solution for the MLE of a simple Gaussian model using differential calcu-
lus.

Example 10.4.1 Assume we are given a training set of i.i.d. real scalars
drawn from an unknown distribution:

D = {x1, x2, · · · , xN } (xi ∈ R,∀i = 1, 2, · · · N).

We choose to use a univariate Gaussian to approximate the unknown
distribution, as follows:

pθ (x) =N(x |µ,σ2) =
1

√
2πσ2

e−
(x−µ)2

2σ2 .

Derive the MLE of the unknown parameters (i.e., µ and σ2) based on
D.

First of all, given D, the log-likelihood function can be written as

l(µ,σ2) =

N∑
i=1

ln pθ (xi)

=

N∑
i=1

[
−

ln(2πσ2)

2
−
(xi − µ)2

2σ2

]
.

We solve the optimization problem in Eq. (10.6) by a simple differential
calculus method:

∂l(µ,σ2)

∂µ
= −

1
σ2

N∑
i=1

(xi − µ).
∂l(µ,σ2)

∂µ
= 0 =⇒ µMLE =

1
N

N∑
i=1

xi

∂l(µ,σ2)

∂σ2 = 0 =⇒ σ2
MLE =

1
N

N∑
i=1

(xi − µMLE)
2. ∂l(µ,σ2)

∂σ2 = −
N

2σ2 +
1

2(σ2)2

N∑
i=1

(xi − µ)
2.

For this simple case, the MLE of the Gaussian mean and Gaussian variance
equals to the sample mean and sample variance of the given training
samples. �
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10.4.2 Maximum-Likelihood Classifier

When we use the maximum-likelihood method to estimate model pa-
rameters in the statistical data-modeling procedure for a K-class pattern-
classification problem, we first choose K probabilistic models p̂θk (x) to
approximate the class-dependent distributions p(x|ωk ) for all classes k =
1, · · · , K .

Second, we collect a training set for each class:

Dk ∼ p(x|ωk ) (k = 1, · · · , K).

Next, we apply the maximum-likelihood method to estimate the model
parameters for each class:

θ∗k = arg max
θk

p̂θk (Dk ) (k = 1, · · · , K).

Finally, the estimated models p̂θ∗k (x) (k = 1, · · · , K) are used in the plug-
in MAP rule in place of the unknown class-conditional distributions to
classify any new pattern.

10.5 Generative Models (in a Nutshell)

As we have discussed, theoretically speaking, the plug-in MAP decision
rule is not optimal because it relies on density estimators that approximate
the unknown true data distribution. In practice, the performance of the
plug-in MAP rule largely depends on whether we choose good probabilis-
tic models for the underlying data distributions. Generally speaking, a
good model reflects the nature of the underlying data and needs to be
sophisticated enough to capture the critical dependencies in the data. On
the other hand, the model structure should be simple enough to be compu-
tationally tractable. Figure 10.8 lists many popular generative models that
may be used for a variety of data types. The model complexity generally
increases from left to right, and each arrow indicates an extension of a
simpler generative model into a more sophisticated one. In the following
chapters, we will explore in detail what these models are and how to
learn these models from training samples. Here, let us first have a quick
overview of these generative models.

As shown in Figure 10.8, we distinguish our model choices between contin-
uous and discrete data. Gaussian distributions play an essential role when
we have continuous data. We can use multivariate Gaussian models for
high-dimensional continuous data if they follow a unimodal distribution.
For more complex distributions, we can use the idea of finite mixtures to
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Figure 10.8: A roadmap of some im-
portant generative models for statistical
data modeling. The model complexity in-
creases from left to right, and each arrow
indicates an extension of a simpler gen-
erative model into a more sophisticated
model.

construct Gaussian mixture models (GMMs). Furthermore, GMMs can
be extended to continuous-density hidden Markov models (HMMs) for
continuous sequential data. Chapter 12 discusses these models in detail
as mixture models. Another idea is to use some transformations of random
variables to convert simple Gaussians into more sophisticated ones, such
as factor analysis, linear Gaussian models, and deep generative models.
Chapter 13 discusses these models as entangled models. Generative mod-
els can be made very general by introducing arbitrary dependency in
model structure, which leads to the general Gaussian graphical models
for arbitrary continuous data. Chapter 15 discusses the graphical models.
On the other hand, multinomial distributions serve as the basic building
blocks in all generative models for discrete data. A set of multinomial dis-
tributions is introduced for discrete sequential data based on the Markov
assumption, leading to the Markov chains (to be discussed in Chapter 11).
The complexity of these models can be enhanced with the same idea of
finite mixtures, which leads to mixtures of multinomials (MMMs) and
discrete-density HMMs (see Chapter 12). Furthermore, we may derive any
arbitrarily dependent multinomial graphical models for discrete data (see
Chapter 15).

When we go from left to right in the spectrum of models in Figure 10.8,
the model power increases, so the models can be used to approximate
more and more complicated distributions. However, the computational
complexity of these models also generally increases from left to right.
Among them, the HMM is a notable landmark in the spectrum: all models
to the left of HMM (including HMMs) are normally considered to be
computationally efficient, so these models can be applied to large-scale
tasks without any major computational difficulties. On the other hand,
all models to the right of HMM (including all general graphical models)
cannot be computed in an efficient way, so they are only suitable for small-
scale problems, or we have to rely on approximation schemes to derive
rough solutions for larger problems.
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10.5.1 Generative versus Discriminative Models

Finally, let us briefly explore the pros and cons of generative models in
machine learning as compared with discriminative models. Generative
models represent a more general framework for machine learning and
are expected to be computationally more expensive than discriminative
models in general. Taking pattern classification as an example, the learn-
ing of discriminative models only needs to focus on how to learn the
separation boundaries among different classes. Once these boundaries are
learned, any new pattern can be classified accordingly. On the other hand,
generative models are concerned with learning the data distribution in
the entire feature space. Once the data distribution is known, the decision
boundaries are simply derived by the MAP rule (or the plug-in MAP
rule). Conceptually speaking, density estimation is a much more difficult
task than the learning of separation boundaries. At last, the advantage
of generative models lies in the fact that we can explicitly model key
dependencies for the underlying data based on certain fully or partially
known data-generation mechanisms. By explicitly exploring these prior-
knowledge sources, we are able to derive more parsimonious generative
models for the data arising from certain application scenarios than with
a black-box approach using discriminative models. These issues will be
further discussed in Chapter 15.
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Exercises

Q10.1 In the generative model p(x,ω) in Figure 10.2, assume the feature vector x consists of two parts,
x =

[
xg; xb

]
, where xb denotes some missing components that cannot be observed for some reason.

Derive the optimal decision rule to use p(xg, xb ,ω) to classify any input x based on its observed part xg
only.

Q10.2 Suppose we have three classes in two dimensions with the following underlying distributions:

I Class ω1: p(x|ω1) =N(0, I).
I Class ω2: p(x|ω2) =N

( [
1
1

]
, I

)
.

I Class ω3: p(x|ω3) =
1
2N

( [
0.5
0.5

]
, I

)
+ 1

2N
( [
−0.5

0.5

]
, I

)
.

Here, N(µ,Σ) denotes a two-dimensional Gaussian distribution with mean vector µ and covariance matrix
Σ, and I is the identity matrix. Assume class prior probabilities Pr(ωi) = 1/3, i = 1, 2, 3.

a. Classify the feature x =
[

0.25
0.25

]
based on the MAP decision rule.

b. Suppose the first feature is missing. Classify x =
[
∗

0.25
]

using the optimal rule derived in Q10.1.

c. Suppose the second feature is missing. Classify x =
[

0.25
∗

]
using the optimal rule from Q10.1.

Q10.3 Assume that we are allowed to reject an input as unrecognizable in a pattern-classification task. For an
input x belonging to class ω, we can define a new loss function for any decision rule g(x) as follows:

l
(
ω, g(x)

)
=


0 : g(x) = ω

1 : g(x) , ω

λr : rejection,

where λr ∈ (0, 1) is the loss incurred for choosing a rejection action. Derive the optimal decision rule for
this three-way loss function.

Q10.4 Given a set of data samples
{

x1, x2, · · · , xn
}
, we assume the data follow an exponential distribution as

follows:

p(x |θ) =

θe−θx : x ≥ 0

0 : otherwise.

Derive the MLE for the parameter θ.

Q10.5 Given a set of training samples DN =
{
x1, x2, · · · , xN

}
, the so-called empirical distribution corresponding to

DN is defined as follows:

S
(
x | DN

)
=

1
N

N∑
i=1

δ(x − xi),

where δ(·) denotes Dirac’s delta function. Show that the MLE is equivalent to minimizing the Kullback–
Leibler (KL) divergence between the empirical distribution and the data distribution described by a
generative model p̂θ(x):

θMLE = arg min
θ

KL
(
S(x | DN

)  p̂θ
(
DN

) )
.





Figure 11.1: An illustration of some typ-
ical bell-shaped unimodal distributions.

Figure 11.2: Bounded monotonic distribu-
tions are also unimodal.
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In this chapter, we first consider how to learn generative models to ap-
proximate some simple data distributions where the probability mass is
concentrated only in a single region of the feature space.

For this type of data distribution, we can normally approximate it well
using unimodal generative models. Generally speaking, a unimodal gener-
ative model represents a probability distribution that has a single peak.
The unimodality is well defined for univariate functions. A univariate
function is considered unimodal if it possesses a unique mode, namely,
a single local maximum value (as in Figure 11.1). We can further extend
this definition to include all bounded monotonic functions (as in Figure
11.2). Under this extended definition, most of the common univariate
probabilistic models are unimodal, including normal distributions, bino-
mial distributions, Poisson distributions, uniform distributions, Student’s
t-distributions, gamma distributions, and exponential distributions.

On the other hand, it is not trivial to define unimodality for multivariate
functions [53]. This chapter adopts a straightforward and intuitive defini-
tion: a joint probability distribution of multiple random variables is said
to be unimodal if all of its univariate marginal distributions are unimodal.
For example, a multinomial distribution involves a random vector, and
we know the marginal distribution of each element is a binomial distri-
bution, which is known to be unimodal. Based on this definition, we say
all multinomial distributions are unimodal. Similarly, we can verify that
multivariate Gaussian distributions and the so-called generalized linear
models [171] are also unimodal in this sense.

The following sections introduce several unimodal generative models that
have played an important role in machine learning, such as multivariate
Gaussian models for high-dimensional continuous data in Section 11.1 and
multinomial models for discrete data in Section 11.2. Furthermore, Markov
chain models are introduced in Section 11.3, which adopts the Markov
assumption to model discrete sequences with many multinomial distri-
butions. Finally, we will consider a group of unimodal generative models
called generalized linear models [171], including logistic regression, probit
regression, Poisson regression, and log-linear models, as special cases.
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11.1 Gaussian Models

In Example 10.4.1, we have shown how to estimate a univariate Gaus-
sian model from a set of training samples based on maximum-likelihood
estimation (MLE). Here, let us extend the MLE method to multivariate
Gaussian models that can be used to approximate unimodal distributions
in high-dimensional spaces.

Assume that we are given a set of independent and identically distributed
(i.i.d.) samples randomly drawn from an unknown unimodal distribution
in a d-dimensional space:

D =
{
x1, x2, · · · , xN

}
,

where each xi ∈ Rd for all i = 1, 2, · · · , N .

Here, we choose to use a multivariate Gaussian model to approximate the
unknown unimodal distribution:The exponent in a multivariate Gaussian:

[
(x − µ)ᵀ

]
1×d

[
Σ−1

]
d×d

[
x − µ

]
d×1

=
[
·
]

1×1.

pµ,Σ(x) =N(x | µ,Σ) =
1

(2π)d/2 |Σ |1/2
e−
(x−µ)ᵀΣ−1(x−µ)

2 , (11.1)

where µ ∈ Rd denotes the mean vector, and Σ ∈ Rd×d denotes the covari-
ance matrix. Both of them are unknown model parameters to be estimated
from the given training samples in D. In the following, we will see how to
use the MLE method to learn µ and Σ from D.

First, the log-likelihood function given D can be expressed as follows:

l(µ,Σ) =
N∑
i=1

ln pµ,Σ(xi)

= C −
N
2

ln |Σ | −
1
2

N∑
i=1

(xi − µ)ᵀΣ−1(xi − µ), (11.2)

where C is a constant irrelevant to the model parameters µ and Σ.

In order to maximize the log-likelihood function l(µ,Σ), we compute its
partial derivatives with respect to µ and Σ and then derive the maximum
point by vanishing the partial derivatives. We haveReferring to the box on page 26, we have

∂

∂µ
(xi − µ)

ᵀΣ−1(xi − µ)

= Σ−1(µ − xi ).

∂l(µ,Σ)
∂µ

= 0

=⇒

N∑
i=1

Σ−1(µ − xi) = 0

=⇒ µMLE =
1
N

N∑
i=1

xi , (11.3)
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and referring to the two formulae in the right margin, we further derive
For any square matrix A, referring to the
box on page 26, we have

∂

∂A

(
xᵀA−1y

)
= −(Aᵀ)−1xyᵀ(Aᵀ)−1

∂

∂A

(
ln |A |

)
= (A−1)ᵀ = (Aᵀ)−1.

∂l(µ,Σ)
∂Σ

= 0

=⇒ −
N
2
(Σᵀ)−1 +

1
2
(Σᵀ)−1

[ N∑
i=1

(xi − µ)(xi − µ)ᵀ
]
(Σᵀ)−1 = 0.

If we multiply Σᵀ to both the left and right sides of this equation and
substitute with µMLE in Eq. (11.3), we derive

=⇒ ΣMLE =
1
N

N∑
i=1

(xi − µMLE)(xi − µMLE)
ᵀ. (11.4)

One issue with this MLE formula for the covariance matrix in Eq. (11.4)
is that it estimates d2 free parameters of Σ, so it may end up with an
ill-conditioned matrix ΣMLE when d is large. An ill-conditioned matrix
ΣMLE may lead to unstable results when we invert ΣMLE for the Gaussian
model in Eq. (11.1). The common approach to address this issue is to
impose some structural constraints on the unknown covariance matrix Σ
rather than estimating it as a free d × d matrix. For example, we force the
unknown covariance matrix Σ to be a diagonal matrix. In this case, we
can similarly derive the MLE of this diagonal covariance matrix, whose
diagonal elements happen to equal the diagonal ones in the previous ΣMLE.
See Exercise Q11.2 for more details on this. For other types of structural
constraints, interested readers may refer to Section 13.2 for factor analysis
and linear Gaussian models.

Now, let us use an example to see how we can use Gaussian models for
some pattern-classification problems involving high-dimensional feature
vectors.

Example 11.1.1 Gaussian Models for Classification

In a pattern-classification problem, assume each pattern is represented
by a d-dimensional continuous feature vector, and all patterns from
each class follow a unimodal distribution that can be approximated by a
multivariate Gaussian model. Derive the plug-in maximum a posteriori
(MAP) decision rule for the classifier using Gaussian models.

Assume a classification problem involves K classes:
{
ω1, · · · ,ωK

}
. First

of all, we collect a training set Dk for each class ωk (k = 1, · · · , K). Fur-
thermore, we choose a multivariate Gaussian model for each class ωk (i.e.,
N(x | µ(k),Σ(k)) (k = 1, 2, · · · , K)).

Next, we use Eqs. (11.3) and (11.4) to estimate the unknown parameters of
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Figure 11.3: An illustration of quadratic
discriminant analysis, where each class
is modeled by a multivariate Gaussian
model, and the decision boundary be-
tween any two classes is a parabola-like
quadratic surface.

all Gaussian models based on the collected samples:

Dk −→
{
µ(k)MLE,Σ(k)MLE

}
(k = 1, · · · , K).

The estimated Gaussian models (i.e., N(x|µ(k)MLE,Σ(k)MLE)) can be used to ap-
proximate unknown class-conditional distributions p(x|ωk ) for all classes
k = 1, · · · , K . As a result, for any unknown pattern x, it is classified based
on the following plug-in MAP decision rule:

g(x) = arg max
k

Pr(ωk )p(x|ωk ) = arg max
k

N(x|µ(k)MLE,Σ(k)MLE),

where, for simplicity, all classes are assumed to be equiprobable; that is,
Pr(ωk ) =

1
K for all k.

Furthermore, we investigate the properties of this classifier by examining
the decision boundary between different classes. For example, let us take
any two classes ωi and ωj ; we can easily show that the decision boundary
between them can be expressed as

N(x|µ(i)MLE,Σ(i)MLE) =N(x|µ(j)MLE,Σ(j)MLE).

After taking the logarithm of both sides, we can determine that this bound-
ary is actually a parabola-like quadratic surface in d-dimensional space,
as shown in Figure 11.3. The plug-in MAP rule corresponds to some pair-
wise quadratic classifiers between each pair of classes. This method is
sometimes called quadratic discriminant analysis (QDA) in the literature. See
Exercise Q11.4 for more details on QDA.

In the QDA method, we need to learn several large d × d covariance matri-
ces for all K classes. This may lead to poor or unstable estimators when
training sets are relatively small or the dimension d is high. An alterna-
tive approach is to make all K classes share a common covariance matrix,
say, Σ. Under this setting, each class is still represented by a multivariate
Gaussian model that has its own mean vector µ(k) (k = 1, · · · , K), but all K
Gaussian models share the same covariance matrix Σ. In this case, we still
use each training set to learn each Gaussian mean as in Eq. (11.3):

Dk −→ µ(k)MLE (k = 1, · · · , K).

Meanwhile, we pool all training sets together to estimate the common
covariance matrix Σ as in Eq. (11.4):{

D1, D2, · · · , DK

}
−→ ΣMLE.

The plug-in MAP decision rule for these models can be similarly written
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Figure 11.4: An illustration of linear dis-
criminant analysis, where classes are
modeled by some multivariate Gaussian
models sharing a common covariance ma-
trix, and the decision boundary between
any two classes degenerates into a linear
hyperplane.

as follows:
g(x) = arg max

k
N(x|µ(k)MLE,ΣMLE).

As previously, we can examine the decision boundary of this classifier
in the same way (also refer to Exercise Q11.4). We can easily show that
the decision boundary between any two classes degenerates into a lin-
ear hyperplane because the common covariance matrix cancels out the
quadratic terms, as shown in Figure 11.4. The previous plug-in MAP rule
corresponds to some pair-wise linear classifiers. This method is also called
linear discriminant analysis. For pattern classification, this method shares
many common aspects with the linear discriminative models we have dis-
cussed in Chapter 6. The most noticeable difference in linear discriminant
analysis lies in that the parameters of these linear classifiers are learned
by the MLE method, whereas the linear methods in Chapter 6 are mostly
learned by minimizing some error counts. �

11.2 Multinomial Models

Gaussian models are good for some problems involving continuous data,
where each observation may be represented as a continuous feature vector
in a normed vector space. However, they are not suitable for other data
types, such as discrete or categorical data. In these problems, each sample
usually consists of some distinct symbols, each of which comes from a
finite set. For example, a DNA sequence consists of a sequence of only four
different types of nucleotides, G, A, T, and C. No matter how long a DNA
sequence is, it contains only these four nucleotides. Another example is
text documents. We know that each text document may be short or long,
but it can be viewed as a sequence of some distinct words. All possible
words in a language come from a dictionary, which can be fairly large but
definitely finite for any natural language. Among many choices, multino-
mial models are probably the simplest generative model for discrete or
categorical data.

Discrete data normally consist of separate observations, each of which is a
distinct symbol coming from a finite set. Assume there are M distinct sym-
bols in the set, and the probability of observing each symbol is assumed
to be pi (0 ≤ pi ≤ 1) for all i = 1, 2, · · · , M . These probabilities must satisfy
the sum-to-1 constraint:

M∑
i=1

pi = 1. (11.5)

If we further assume that all observations in any sample are independent
from each other, then the probability of observing a sample, denoted as X,
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can be computed with the following multinomial distribution:

Pr(X | p1, p2, · · · pM ) =
(r1 + r2 + · · · + rM )!

r1! r2! · · · rM !
pr1

1 pr2
2 · · · prMM ,

where ri (i = 1, 2, · · · , M) denotes the frequency of the ith symbol appear-
ing among all observations in X. The probabilities

{
p1, · · · , pM

}
are the

parameters of a multinomial model. Once we know these probabilities, we
can compute the probability of observing any sample consisting of these
symbols.

Example 11.2.1 Multinomial Models for DNA Sequences

If we ignore the order information, we can use a multinomial model
to compute the probability of observing the following DNA sequence,
which is denoted as X:

GAATTCTTCAAAGAGTTCCAGATATCCACAGGCAGATTCTACAAAAGAAG

TGTTTCAATACTGCTCTATCAAAAGATGTATTCCACTCAGTTACTTTCAT

GCACACATCTCAATGAAGTTCCTGAGAAAGCTTCTGTCTAGTTTTTATGT

GAAAATATTTCCTTTTCCATCATGGGCCTCAAAGCGCTCAAAATGAACCC

TTGCAGATACTAGAGAAAGACTGTTTCAAAACTGCTCTATCCA

In this case, every observation in this sequence is a nucleotide. There are
four types of nucleotides in DNA in total. Assume we use p1 to denote
the probability of observing G in any location, p2 for A, p3 for T, and p4
for C. Obviously, we have

∑4
i=1 pi = 1 in this case. If we further assume

all nucleotides in the sequence are independent from each other, we can
compute the probability of observing this sequence as

Pr(X | p1, p2, p3, p4) =
(r1 + r2 + r3 + r4)!

r1! r2! r3! r4!

4∏
i=1

prii , (11.6)

where r1 denotes the frequency of G appearing in this sequence, r2 for A,
r3 for T, and r4 for C. �

If we know all parameters, that is, the four probabilities
{
p1, p2, p3, p4

}
, we

can use the multinomial model in Eq. (11.6) to compute the probability
of observing any other DNA sequence as well. For each given DNA se-
quence, we just need to count how many times each nucleotide appears
in the sequence. Of course, we need to estimate these probabilities from a
training sequence beforehand. Next, let us consider how to estimate these
probabilities from a training sequence X based on MLE.

Given any training sequence X, according to Eq. (11.6), we can represent



11.3 Markov Chain Models 245

the log-likelihood function as follows:

l(p1, p2, p3, p4) = ln Pr(X | p1, p2, p3, p4) = C +
4∑
i=1

ri · ln pi , (11.7)

where C is a constant irrelevant of all parameters. The MLE method aims
to estimate all four parameters by maximizing this log-likelihood function.
An important point in this optimization problem is that these parameters
must satisfy the sum-to-1 constraint in Eq. (11.5) to form a valid probability
distribution. This constrained optimization (see margin note) can be solved
by the method of Lagrange multipliers. We first introduce a Lagrange
multiplier λ for this constraint and then construct the Lagrangian function:

The MLE is formulated as follows:

arg max
p1 ,p2 ,p3 ,p4

l(p1, p2, p3, p4),

subject to

4∑
i=1

pi − 1 = 0.
L(p1, p2, p3, p4, λ) = C +

4∑
i=1

ri · ln pi − λ ·
( 4∑
i=1

pi − 1
)
.

For all i = 1, 2, 3, 4, we have

∂

∂pi
L(p1, p2, p3, p4, λ) = 0

=⇒
ri
pi
− λ = 0

=⇒ pi =
ri
λ

.

After we substitute pi =
ri
λ (i = 1, · · · , 4) into the sum-to-1 constraint∑4

i=1 pi = 1, we can derive λ =
∑4

i=1 ri . Substituting this back into the
previous equation, we finally derive the MLE formula for this multinomial
model as follows:

p(MLE)

i =
ri∑4
i=1 ri

(i = 1, 2, 3, 4). (11.8)

The MLE formula for multinomial models is fairly simple. We only need
to count the frequencies of all distinct symbols in the training set, and the
MLE estimates for all probabilities are computed as the ratios of these
counts. Finally, these estimated probabilities can be used in Eq. (11.6) to
compute the probability of observing any new sequence.

11.3 Markov Chain Models

As we have seen, when we use a multinomial model for discrete sequences,
we have to assume that all observations in each sequence are independent
from each other, which means that we completely ignore the order infor-
mation of the sequence and simply treat it as a bag of symbols. Thus, a
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multinomial model is a very weak model for discrete sequences because
it fails to capture any sequential information. This section introduces a
sequence model based on the Markov assumption, called the Markov
chain model, which is essentially composed of many different multinomial
models.

First of all, let us consider how to model sequences in general. Given a
sequence of T random variables:

X =
{
x1 x2 x3 · · · xt−1 xt xt+1 · · · xT

}
,

we can always compute the probability of observing this sequence accord-
ing to the product rule in probability theory as

Pr(X) = p
(
x1

)
p
(
x2

��x1
)
p
(
x3

��x1x2
)
· · · p

(
xt

��x1 · · · xt−1
)
· · · p

(
xT

��x1 · · · xT−1
)
.

The problem here is that this computation relies on conditional proba-
bilities that involve more and more conditions as a sequence gets longer
and longer. For example, the last term p

(
xT

�� x1 · · · xT−1
)

is essentially a
probability function of T variables because it involves T − 1 conditional
variables. The complexity of such a model will explode exponentially as a
sequence becomes longer and longer.

The well-known Markov assumption has been proposed to address this
issue. Under this assumption, every random variable in a sequence only
depends on its most recent history and, in turn, becomes independent from
the others given the most recent history. If the recent history is defined as
only the preceding variable in the sequence, it is called a first-order Markov
assumption. If it is defined as the two immediately preceding variables, it
is called a second-order Markov assumption. In the same way, we can extend
this idea to higher-order Markov assumptions.

Under the first-order Markov assumption, we have

p
(
xt

�� x1 · · · xt−1
)
= p

(
xt

�� xt−1
)
∀t = 2, 3, · · · , T .Similarly, under the second-order Markov

assumption, we can derive the second-
order Markov chain models as follows:

Pr(X) = p
(
x1

)
p
(
x2

�� x1
)

T∏
t=3

p
(
xt

�� xt−2 xt−1
)
,

where none of these conditional proba-
bility distributions takes more than three
variables.

Therefore, we can compute the probability of observing sequence X as
follows:

Pr(X) = p
(
x1

) T∏
t=2

p
(
xt

�� xt−1
)
. (11.9)

This formula represents the so-called first-order Markov chain models, which
include a set of conditional distributions as parameters. We can see that
none of these probability functions has more than two free variables.

Next, the Markov chain models can be further simplified if we adopt two
more assumptions as follows:
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Figure 11.5: An illustration of a first-order
Markov chain model for DNA sequences.

Figure 11.6: An illustration of the transi-
tion matrix of a first-order Markov chain
model for DNA sequences.

I Stationary assumption: All conditional probabilities in Eq. (11.9) do
not change for different t values. That is,

p
(
xt

�� xt−1
)
= p

(
xt′

�� xt′−1
)

for any two t and t ′ in 1, 2, · · ·T . The stationary assumption allows us
to use only a single probability function to compute all conditional
probabilities in a sequence because the same function is applicable
to any location t in a sequence.

I Discrete observation assumption: All observations in a sequence are
discrete random variables. Furthermore, all of these discrete random
variables take their values from the same finite set of M distinct sym-
bols (i.e., {ω1,ω2, · · · ,ωM }). Hence, we can represent the previous
conditional distribution p

(
xt

�� xt−1
)

as a matrix A:

A =

[
ai j

]
M×M

where each element ai j denotes one conditional probability: ai j =
Pr

(
xt = ωj

�� xt−1 = ωi

)
for all 1 ≤ i, j ≤ M. Each distinct symbol is

also called a Markov state in a first-order Markov chain model. The
matrix A is usually called a transition matrix. Each ai j can be viewed
as a transition probability from state ωi to state ωj .

Under these assumptions, as long as we know the transition matrix A,
we will be able to compute the probability for any discrete sequence as
in Eq. (11.9). In other words, a Markov chain model is fully represented
by the Markov states and the transition matrix. Furthermore, a Markov
chain model can also be represented as a directed graph, where each
node represents a Markov state and each arc represents a state transition,
associated with a transition probability. Any sequence can be viewed
as a path traversing such a graph, with the probability of observing the
sequence computed based on the transition probabilities along the path.

Here, let us use Example 11.2.1 again to explain how to use the first-order
Markov chain model for DNA sequences. Any DNA sequence contains
only four different nucleotides, G, A, T, and C. We can further add two
dummy symbols, begin and end, to indicate the beginning and ending of
a sequence. In this case, we end up with six Markov states in total. This
Markov chain model can be represented by the directed graph in Figure
11.5. Each arc is associated with a transition probability ai j , summarized
in Figure 11.6.

Based on these, we will be able to compute the probability of observing
any DNA sequence with this Markov chain model. For example:

Pr(GAATC) = p(G|begin)p(A|G)p(A|A)p(T|A)p(C|T)p(end |C)
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= 0.25 × 0.16 × 0.18 × 0.12 × 0.35 × 0.01.

Next, let us look at how to estimate Markov chain models, particularly
the transition matrix A, from training samples. We can recognize that
each row of the transition matrix A is actually a multinomial model. As
a result, the transition matrix of a Markov chain model can be broken
down into a number of different multinomial models, where the ith row
is a multinomial model for how likely it is that each symbol appears right
after the ith symbol ωi in a sequence. After applying the same method of
Lagrange multipliers, we derive the MLE formula for the Markov chain
model as follows:

a(MLE)

i j =
r(ωiωj )

r(ωi)
(1 ≤ i, j ≤ M), (11.10)

where r(ωi) denotes the frequency of symbol ωi appearing in training sam-
ples, and r(ωiωj ) denotes the frequency of an ordered pair ωiωj appearing
in the training set. This idea can be extended to higher-order Markov chain
models. Refer to Exercise Q11.7 for more details.

Once we know how to learn Markov chain models from training data,
we can use the Markov chain models to classify sequences. For example,
the first-order Markov chain models can be used to determine whether
an unknown DNA segment belongs to CpG or GpC sites. We just collect
some DNA sequences from each category and estimate two Markov chain
models for them. Any new unknown DNA segment can be classified using
these estimated models.

In biology, the CpG sites are regions of
DNA occurring more often in CG islands,
which have a certain significance in gene
expression.

In the following, let us introduce another example that uses Markov
chain models for natural language processing. As we know, texts in any
language can be viewed as discrete sequences of different words chosen
from a finite set, which is usually called the vocabulary. The vocabulary
includes all distinct words that can be used in a language. In most natural
languages, the vocabulary is usually very large, and it may include tens
of thousands or even up to tens of millions of distinct words. Under
this setting, any text document can be viewed as a sequence of discrete
symbols, each of which is a word from the predetermined vocabulary. An
important topic in natural language processing, called language modeling,
represents a group of methods that distinguish natural or meaningful
sentences in a language from random word sequences that do not make
any senses. To do this, a language model should be able to score any word
sequence and give higher scores to meaningful sentences and lower scores
to random word sequences. As a result, language models can also be used
to predict the next word or any missing words in partial sentences. A
good language model plays a critical role in many successful real-world
applications, such as speech recognition and machine translation.
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Example 11.3.1 N-Gram Language Models

Use Markov chain models to build a language model for English sen-
tences.

When we use Markov chain models for language modeling, we adopt the
Markov assumption for languages, and the resultant models are usually
called n-gram language models. Assume we have M distinct words in
the vocabulary. Each English sentence is a sequence of words from the
vocabulary. For example, given the following English sentence S:

I would like to fly from Toronto to San Francisco this Friday,

a language model should be able to calculate the probability of observ-
ing such a sequence (i.e., Pr(S)). First, assume we adopt the first-order
Markov assumption, leading to the first-order Markov chain model, nor-
mally called a bigram language model. In a bigram model, the probability
in the previous example is computed by the following conditional proba-
bilities:

Pr(S) = p(I|begin) p(would|I) p(like|would) · · · p(end |Friday).

Because we have M distinct words in our vocabulary, our bigram language
model has M ×M conditional probabilities like these. As long as we have
all M ×M conditional probabilities, we are able to compute the probability
of observing any word sequence. A bigram language model can be simi-
larly represented as a directed graph, as in Figure 11.5, where each vertex
represents a distinct word, and each arc is associated with a conditional
probability. These M ×M conditional probabilities can also be organized
as an M × M transition matrix, as in Figure 11.6. Meanwhile, a bigram
language model can also be viewed as a set of M different multinomial
models, each of which corresponds to one row of this matrix.

A bigram model can only model the dependencies between two consecu-
tive words in a sequence. If we want to model long-span dependencies
in language, a straightforward extension is to use higher-order Markov
chain models. For example, in a second-order Markov chain model, usu-
ally called a trigram language model, the probability Pr(S) is computed as
follows:

p(I|begin) p(would|begin, I) p(like|I, would) · · · p(end |this, Friday).

A trigram model needs to maintain M ×M ×M conditional probabilities
like these in order to compute the probability for any word sequence.

These naive n-gram models are bulky. Each
conditional probability is usually repre-
sented by a model parameter. Assuming
M = 104 (a relatively small vocabulary
only suitable for some specific domains),
a bigram model ends up with about 100
million (108) parameters, whereas a tri-
gram model has about a trillion (1012) pa-
rameters.

In language modeling, we usually collect a large number of English sen-
tences, called a training corpus, to learn all of the conditional probabilities
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generative modelx y

in an n-gram language model. The MLE for n-gram language models can
be similarly derived using the method of Lagrange multipliers. For bigram
models, we have

pMLE(wj |wi) =
r(wiwj )

r(wi)
(1 ≤ i, j ≤ M),

and similarly, for trigram models, we have

pMLE(wk |wi ,wj ) =
r(wiwjwk )

r(wiwj )
(1 ≤ i, j, k ≤ M),

where r(wi) denotes the frequency of a word wi appearing in the train-
ing corpus, r(wiwj ) denotes the frequency of a word bigram wiwj , and
r(wiwjwk ) denotes the frequency of a word trigram wiwjwk . From these
MLE formulae, it is clear that if a bigram wiwj or a trigram wiwjwk never
appears in the training corpus, it yields a 0 probability (i.e., pMLE(wj |wi) = 0
or pMLE(wk |wi ,wj ) = 0). In any natural language like English, we usually
have a large number of such bigrams/trigrams. If a term does not appear
in the training corpus, it usually means that we have not obtained enough
samples to see this infrequent term, rather than it being impossible to
appear. Any such unseen term in a sequence will make the probability
of observing the whole sequence be 0, which can significantly skew the
prediction of it.

To fix these 0 probabilities due to data sparsity, the MLE formulae for
n-gram models must be combined with some smoothing techniques. In-
terested readers may refer to Good–Turing discounting [83] or back-off
models [125] for how to smooth the MLE estimates for n-grams. �

11.4 Generalized Linear Models

This section introduces another class of unimodal generative models,
called generalized linear models (GLMs) [171], which were initially extended
from ordinary linear regression in order to deal with non-Gaussian dis-
tributions. At present, GLMs are a popular method in statistics to handle
binary, categorical, and count data. Here, we will first consider the basic
idea behind GLMs, and then briefly explore several GLMs that are partic-
ularly important in machine learning: probit regression, Poisson regression,
and log-linear models.

In statistics, the inputs x are usually called
explanatory variables, and the output y is
usually called a response variable.

The key idea behind GLMs is to construct a simple generative model to
approximate the conditional distribution of the output y given the input
random variables x (i.e., p(y |x)) in a general machine learning setting, as
depicted in the margin note. The key components of a generalized linear
model include the following:
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I An underlying unimodal probability distribution
We first assume that the output y follows a simple unimodal prob-
ability distribution. The choice of a probability function for this
distribution mainly depends on the nature of the output y. For ex-
ample, if y is binary, we may choose a binomial distribution. If y is a
K-way categorical variable, we may select a multinomial distribu-
tion. Moreover, if y is count data (i.e., y ∈ {0, 1, 2, · · · }), we may use a
Poisson distribution.

I A link function
We further assume that the mean of the chosen probability distribu-
tion is linked to a linear predictor of the input variables x through a
link function g(·) as follows:

E
[
y
]
= g(wᵀx),

where the linear coefficients (i.e., w) are unknown parameters of the
GLM, which must be estimated from some training samples. The
link function must be properly chosen so that the range of the link
function matches the domain of the distribution’s mean. For example,
if y is assumed to follow a Poisson distribution, we may choose an
exponential function as the link function, namely, E

[
y
]
= exp(wᵀx),

because the mean of a Poisson distribution is always positive.

Once we have made a choice for these two components, we are able to
derive a parametric probability function for the conditional distribution of
y given the input x, denoted as p̂w(y |x), which is the GLM. Here w stands
for the unknown parameters of the GLM, which need to be estimated
from some training samples of input–output pairs based on MLE. For
most GLMs, no closed-form solution exists to derive the MLE of the
model parameters, and instead, we have to rely on iterative optimization
methods, such as gradient-descent or Newton methods.

GLM y Distribution g(·)

Linear regression R Gaussian Identity

Logistic regression Binary Binomial Sigmoid

Probit regression Binary Binomial Probit

Poisson regression Count Poisson exp(·)

Log-linear model Categorical Multinomial Softmax

Table 11.1: Some popular GLMs and the
corresponding choices for their under-
lying probability distributions and their
link functions g(·).

Table 11.1 lists some popular choices for these two components that lead
to several well-known GLMs in statistics. In the following, we will briefly
explore some of these GLMs and their applications in the context of ma-
chine learning. As we will see, GLMs are good candidates for generative
models when the output y is a discrete random variable.
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Figure 11.7: Comparison between the pro-
bit function Φ(x) and the sigmoid function
l(x).

11.4.1 Probit Regression

In the case where the output y is binary (y ∈ {0, 1}), we assume that y

follows a binomial distribution with one trial (N = 1), as follows:As we know, the binomial distribution
with one trial (N = 1),

B(y | N = 1, p),

is also called the Bernoulli distribution.

y ∼ B(y | N = 1, p) = py(1 − p)1−y ,

where 0 ≤ p ≤ 1 stands for the parameter of the binomial distribution. We
know the mean of this random variable y can be computed as E

[
y
]
= p

for this binomial distribution. For each pair of (x, y), we need to choose a
link function to map a linear predictor wᵀx to the range of 0 ≤ p ≤ 1. One
choice is to use the sigmoid function l(·) in Eq. (6.12), that is, p = l(wᵀx),
which leads to logistic regression from Section 6.4. Another popular choice
is to use the so-called probit function Φ(x), which is defined based on the
error function of a Gaussian distribution (see margin note).

The probit function is defined as follows:

Φ(x) =
1
2

(
1 + erf(x)

)
,

with

erf(x) =
2
√
π

∫ x

0
exp

(
−
t2

2

)
dt.

As shown
in Figure 11.7, similar to the sigmoid function, the probit function Φ(x) is
also a monotonically increasing function from 0 to +1 when x goes from
−∞ to∞. The range of the probit function matches with the domain of p,
so we can choose

p = Φ(wᵀx). (11.11)

Substituting Eq. (11.11) into the previous binomial distribution, we can
derive the probit regression model for any input–output pair (x, y) as

p̂w(y |x) =
(
Φ

(
wᵀx

) )y (
1 −Φ

(
wᵀx

) )1−y
y ∈ {0, 1}, (11.12)

where the model parameter w can be estimated from the training samples
based on MLE. See Exercise Q11.8 for how to derive an MLE learning
algorithm for the probit regression model.

11.4.2 Poisson Regression

In many real-world scenarios, the output y can represent some count data,
such as the number of some event occurring per time unit. Some typical
examples include the number of customers calling a help center per hour,
visitors to a website per month, and failures in a data center per day. In
these cases, we can use the input x to represent some measurements or
observations made on the process.

Poisson regression is a very useful model for us to predict y based on
some observation x. If we assume all events happen randomly and inde-
pendently and the average interval between any two consecutive events
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is constant, then we know y follows the Poisson distribution:

Refer to the Poisson distribution in Ap-
pendix A.

y ∼ p(y | λ) =
e−λ · λy

y!
∀y = 0, 1, 2, · · · ,

where λ > 0 denotes the parameter of the Poisson distribution. We also
know that E

[
y
]
= λ holds for any Poisson distribution. In this case, we

use an exponential function exp(·) to match the range of λ:

λ = exp(wᵀx).

Substituting this into the previous Poisson distribution, we derive the
Poisson regression model as follows:

p̂w(y |x) =
1
y!

exp
(
− exp(wᵀx)

)
· exp

(
ywᵀx

)
y = 0, 1, 2, · · · , (11.13)

where w denotes the unknown parameters of the Poisson regression model.
See Exercise Q11.9 for how to derive the MLE for this model.

11.4.3 Log-Linear Models

In a K-class pattern-classification problem, the output y is a K-way cat-
egory (i.e., y ∈ {ω1,ω2, · · ·ωK }). We can use the 1-of-K representation to
encode y as a K-dimension one-hot vector:

y ∆=
[
y1 y2 · · · yK

]ᵀ,
where yk = δ(y −ωk ) for all k = 1, 2, · · · , K with the delta function

δ(y −ωk ) =


1 when y = ωk

0 when y , ωk .

We further assume each output y follows a multinomial distribution with
one trial N = 1, as follows:

As we know, the multinomial distribution
with one trial (N = 1),

Mult
(
y

�� N = 1, p1, · · · , pK

)
,

is also called the categorical distribution.y ∼Mult
(
y

�� N = 1, p1, · · · , pK
)
∼

K∏
k=1

pyk
k

From the property of this multinomial distribution, we have

E
[
y
]
=

[
p1 p2 · · · pK

]ᵀ,
where 0 ≤ pk ≤ 1 for all k, and

∑K
k=1 pk = 1.
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Given any sample (x, y), we may choose the softmax function in Eq. (6.18)
to map K different linear predictors of x (i.e., wᵀ

k
x for all k = 1, 2, · · · , K) to

the range of the previous E
[
y
]
. In other words, we have

E
[
y
]
= softmax(x) =

[
ewᵀ1 x∑K

k=1 ewᵀ
k

x

ewᵀ2 x∑K
k=1 ewᵀ

k
x
· · ·

ewᵀK x∑K
k=1 ewᵀ

k
x

]ᵀ
,

where we use the softmax function, along with K different linear weights
(i.e.,

{
w1, · · · , wK

}
), to construct the link functions for all pk as follows:

pk =
ewᵀ

k
x∑K

k=1 ewᵀ
k

x
(k = 1, 2, · · · , K).

After substituting this into the multinomial distribution, we derive the
underlying GLM in this setting as follows:

p̂w1,· · · ,wK (y | x) =
K∏
k=1

(
ewᵀ

k
x∑K

k=1 ewᵀ
k

x

)yk
(11.14)

This GLM is sometimes called the log-linear model in machine learning,
which can be viewed as a multiclass version of the logistic regression
in Section 6.4. The unknown parameters

{
w1, · · · , wK

}
can be estimated

from a set of training samples based on MLE.

In the field of natural language process-
ing, log-linear models are often called max-
imum entropy models [20].

Log-linear models are widely used to solve various problems in natural
language processing. Here, we will consider an important topic, called
text categorization, which represents a class of techniques that automati-
cally classify text documents into different categories. Text categorization
includes many common tasks, such as spam filtering, language identifica-
tion, sentimental analysis, and news-document classification.

Example 11.4.1 Log-Linear Models for Text Categorization

If we can use some predefined rules (based on keywords, syntactic
patterns, etc.) to extract a fixed-size feature vector x to represent each
text document, show that the log-linear model can be applied to text
categorization.

See Berger et al. [20] for more details on
how to extract fixed-size features for text
documents.

Assume we have K classes in total, denoted as {ω1,ω2, · · · ,ωK }. As previ-
ously, if we use the one-hot vector y to represent the class label for each
document x, we may use the log-linear model in Eq. (11.14) to approximate
the conditional probability distribution p(y|x).

Given a training set consisting of N i.i.d. samples, as follows:

D =
{
(x(i), y(i)) | i = 1, 2, · · · N

}
,
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we can learn all parameters
{
w1, w2, · · · , wK

}
based on the MLE method.

Given D, the log-likelihood function of the log-linear model can be ex-
pressed as

l(w1, · · ·wK ) =

N∑
i=1

K∑
k=1

y
(i)
k

ln

(
ewᵀ

k
x(i)∑K

k=1 ewᵀ
k

x(i)

)
, (11.15)

where y
(i)
k
∈ {0, 1} denotes the kth element of the one-hot vector y(i).

We can show that this log-likelihood function is concave with a single
global maximum, which can be found by an iterative gradient-descent
method.

Because we can apply the chain rule to compute the gradients (i.e., ∂l(·)∂wk
for

all k = 1, · · · , K), the MLE of all parameters, denoted as
{
w(MLE)

1 , · · · , w(MLE)

K

}
,

can be derived based on a gradient-descent algorithm. See Exercise Q11.11
for how to derive the MLE learning algorithm for this log-likelihood
function.

Once we have estimated all model parameters, for any new text document
x, we classify it to class ωk̂ based on the following plug-in MAP rule:

k̂ = arg max
k=1· · ·K

xᵀw(MLE)

k
,

which is essentially a pair-wise linear classifier (see margin note). �

k̂ = arg max
k

Pr(ωk |x)

= arg max
k

e(w
(MLE)
k

)ᵀx∑K
k=1 e

(w(MLE)
k

)ᵀx

= arg max
k

e(w
(MLE)
k

)ᵀx

= arg max
k
(w(MLE)

k
)ᵀx

= arg max
k

xᵀw(MLE)
k

.



256 11 Unimodal Models

Exercises

Q11.1 Determine the condition(s) under which a beta distribution is unimodal.

Q11.2 Derive the MLE for multivariate Gaussian models with a diagonal covariance matrix, i.e. N(x|µ,Σ)with

x, µ ∈ Rd and Σ =


σ1

. . .

σd


. Show the MLE of µ is the same as Eq. (11.3) and that of {σ1, · · · ,σd}

equals to the diagonal elements in Eq. (11.4).

Q11.3 Given K different classes (i.e.,
{
ω1,ω2, · · · ,ωK

}
), we assume each class ωk (k = 1, 2, · · · , K) is modeled

by a multivariate Gaussian distribution with the mean vector µk and the covariance matrix Σ; that is,
p(x |ωk ) = N(x | µk ,Σ), where Σ is the common covariance matrix for all K classes. Suppose we have
collected N data samples from these K classes (i.e., {x1, x2, · · · , xN }), and let {l1, l2, · · · , lN } be their labels
so that ln = k means that the data sample xn comes from the kth class ωk . Based on the given data set,
derive the MLE for all model parameters (i.e., all mean vectors µk (k = 1, 2, · · · , K)) and the common
covariance matrix Σ.

Q11.4 Given x ∈ Rn and y ∈ {0, 1}, assume Pr(y = k) = πk > 0 for k = 0, 1 with (π0 + π1 = 1), and the conditional
distribution of x given y is p(x | y) =N(x | µy ,Σy), where µ0, µ1 ∈ Rn are two mean vectors (with µ0 , µ1),
and Σ0,Σ1 ∈ Rd×d are two covariance matrices.

a. What is the unconditional density of x (i.e., p(x))?
b. Assume that Σ0 = Σ1 = Σ is a positive definite matrix. Derive the MAP decision rule. What is the

nature of the separation boundary between two classes? Show the procedure.
c. Assume that Σ0 , Σ1 are two positive-definite matrices. Derive the MAP decision rule. What is the

nature of the separation boundary between two classes? Show the procedure.

Q11.5 Extend the MLE in Eq. (11.8) to a generic multinomial model involving M symbols.

Q11.6 Draw a graph representation similar to Figure 11.5 for a second-order Markov chain model of the DNA
sequences.

Q11.7 Derive the MLE for first-order Markov chain models in Eq. (11.10).

Q11.8 Derive the gradient for the log-likelihood function of the probit regression model in Eq. (11.12). Based on
this, derive a learning algorithm for probit regression using the gradient-descent method.

Q11.9 Derive the gradient and Hessian matrix for the log-likelihood function of the Poisson regression in Eq.
(11.13) and a learning algorithm for the MLE of its parameter w using (i) the gradient-descent method
and (ii) Newton’s method.

Q11.10 Prove that the log-likelihood function of log-linear models in Eq. (11.15) is concave with a single global
maximum.

Q11.11 Derive the gradient-descent method for the MLE of all parameters of the log-linear models in Example
11.4.1.
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The unimodal models discussed in the last chapter are relatively easy
to learn but have strong limitations in approximating the complex data
distributions abundant in real-world applications. Data generated from
many physical processes tend to reveal the property of multimodality in
their distributions over the feature space. For example, if we extract a major
acoustic feature from speech signals collected over a large population of
male and female speakers, we may observe a multimodal distribution, as
shown in Figure 12.1. Obviously, we cannot use any unimodal model to
approximate this type of multimodal distribution accurately.

In machine learning, we normally use unimodal models as building blocks
to construct more complex generative models. Generally speaking, we
have at least two different means to expand simple unimodal models. This
chapter introduces the first method, which is based on the idea of finite
mixture distributions [59, 239, 162], where a number of different unimodal
models are combined as a mixture model to capture multiple peaks in a
complex multimodal distribution. The next chapter discusses the second
method, which relies on transformations of random variables to convert
simpler generative models into more sophisticated ones.

12.1 Formulation of Mixture Models

The idea of mixture models is to linearly combine a group of simpler
distributions (presumably unimodal) to derive a more complex mixture
distribution. The resultant model is called a mixture model, and each of the
simpler distributions is normally called a component model. When we only
use a finite number of component models, this leads to the so-called finite
mixture models. Generally speaking, a finite mixture model of M (∈ N)
components can be represented as follows:

pθ(x) =
M∑
m=1

wm · fθm (x), (12.1)

where θ =
{
wm, θm |m = 1, 2, · · · , M

}
denotes all model parameters of the

mixture model, and fθm (x) indicates a component model with its model
parameters θm and wm for its mixture weight. All mixture weights sat-
isfy the sum-to-1 constraint:

∑M
m=1 wm = 1. The mixture weights {wm | i =
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Figure 12.2: A bimodal distribution
formed by averaging two different Gaus-
sian distributions.

1, · · · , M} can be viewed as an M-value multinomial model. If every com-
ponent model represents a valid distribution (self-normalized to 1), the
sum-to-1 constraint for mixture weights ensures that the resultant mixture
model pθ(x) is also a valid probability distribution over the space that also
satisfies the sum-to-1 constraint (see margin note).

Given the sum-to-1 constraint

M∑
m=1

wm = 1,

it is trivial to prove∫
x
pθ (x)dx = 1.

In a finite mixture model, we usually choose the component models as
some unimodal models according to the nature of feature vectors. For
example, if we want to approximate a multimodal distribution of continu-
ous data, we can select Gaussian models as the component models. In this
case, the mixture model consists of a number of Gaussian models with
different mean vectors and covariance matrices, which is usually called a
Gaussian mixture model (GMM). We will further discuss GMMs in detail
in Section 12.3. Similarly, for discrete data, we may choose multinomial
models as the component models, leading to the so-called multinomial
mixture model.See Exercise Q12.6 for more details on

multinomial mixture models.
If we want to understand how a mixture model is formed, it is important to
know the difference between averaging random variables and averaging
probability functions.

Example 12.1.1 Averaging Random Variables versus Probability Functions

Assume two independent random variables follow two univariate Gaus-
sian distributions: x1 ∼ N(µ1,σ2

1 ) and x2 ∼ N(µ2,σ2
2 ). If we generate a

new random variable x by averaging x1 and x2 as x = ε x1 + (1 − ε) x2

with a constant 0 < ε < 1, determine whether x follows a bimodal
mixture distribution.

Because x1 and x2 both follow a Gaussian distribution, any linear transfor-
mation of them will result in a new random variable that follows another
Gaussian distribution rather than a mixture distribution. Based on the
properties of Gaussian distributions (see Exercise Q2.9), we can derive
that x follows a Gaussian distribution as

x ∼N
(
ε µ1 + (1 − ε)µ1, ε2σ2

1 + (1 − ε)
2σ2

2

)
.

Here, x still follows a unimodal distribution rather than a mixture distri-
bution of two Gaussians. If we want to form a bimodal mixture model, we
have to directly average the density functions as follows:

x ′ ∼ εN(µ1,σ2
1 ) + (1 − ε)N(x | µ2,σ2

2 ).

If we properly choose ε and the parameters of these two Gaussians, we
can approximate many bimodal distributions, such as in Figure 12.2. �

In fact, in addition to Gaussians and multinomials, we can choose the
component models of a finite mixture model from a much broader class
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of probability distributions, normally called the exponential family. In the
following, we will first consider the property of exponential family dis-
tributions before we discuss how to estimate finite mixture models from
training data.

12.1.1 Exponential Family (e-Family)

As before, we use fθ(x) to represent a parametric probability distribution
of random variable x, where θ denotes the regular model parameters. Gen-
erally speaking, if we can reparameterize it into the following exponential
form:

fθ(x) = exp
(
A(x̄) + x̄ᵀλ − K(λ)

)
,

we say that the distribution fθ(x) belongs to the exponential family (e-family
for short). In this canonical form, λ = g(θ) is usually called the natural
parameter of the model, and it only depends on the regular model pa-
rameters θ (not x) through a function g(·). Meanwhile, x̄ = h(x) is called
sufficient statistic of the model because it only depends on x (not θ) through
another function h(·). Here, K(λ) is a normalization term to ensure that
fθ(x) satisfies the sum-to-1 constraint. We can derive K(λ) as follows:∫

x
fθ (x)dx = 1 =⇒

K(λ) = ln
[ ∫

x
exp

(
A
(
h(x)

)
+

(
h(x)

)ᵀ
λ
)
dx

]
.

One important property of all e-family distributions is that their log-
likelihood functions can be represented in a fairly simple form as the
exponential cancels out the logarithm. If we take the logarithm on fθ(x),
we have

ln fθ(x) = A(x̄) + x̄ᵀλ − K(λ),

which includes three separate terms: one term A(x̄) only depending on
sufficient statistics x̄, one term K(λ) only relying on natural parameters λ,
and a linear cross term x̄ᵀλ. This also suggests that when we estimate any
e-family model with maximum likelihood estimation (MLE), it is always
more convenient to work with the log-likelihood function rather than the
likelihood function itself.

In spite of its fairly restricted form, the e-family represents a very broad
class of parametric probability functions, which includes almost all com-
mon probability distributions we are familiar with. For example, let us
explain why the multivariate Gaussian distributions belong to the e-family
by reparameterizing them to derive the natural parameters λ and suffi-
cient statistics x̄. Based on the original form of the multivariate Gaussian
model in Eq. (11.1), we have

lnN(x|µ,Σ) = −
d
2

ln(2π) −
1
2

ln |Σ | −
1
2
(x − µ)ᵀΣ−1(x − µ)

= −
d
2

ln(2π) +
1
2

ln |Σ−1 | −
1
2

xᵀΣ−1x + xᵀΣ−1µ −
1
2
µᵀΣ−1µ



260 12 Mixture Models

= −
d
2

ln(2π)︸      ︷︷      ︸
A(x̄)

+ x ·
( λ1︷︸︸︷
Σ−1µ

)
+

(
−

1
2

xᵀx
)
·

λ2︷︸︸︷
Σ−1︸                                    ︷︷                                    ︸

x̄ᵀλ

+
1
2

ln |Σ−1 | −
1
2
µᵀΣ−1µ︸                        ︷︷                        ︸

K(λ)= 1
2 ln |λ2 |−

1
2 λ
ᵀ
1λ
−1
2 λ1

From this, we can see that the natural parameters for the multivariate
Gaussian are λ = [λ1 λ2] = g(µ,Σ) =

[
Σ−1µ Σ−1] and the corresponding

sufficient statistics x̄ = h(x) =
[
x − 1

2 xᵀx
]
. And the normalization term

K(λ) can also be represented as a function of λ1 and λ2 as previously.
Therefore, multivariate Gaussian distributions belong to the e-family. In
the same way, we can verify that binomial, multinomial, Bernoulli, Dirich-
let, beta, gamma, von Mises–Fisher, and inverse-Wishart distributions can
all be reparameterized into the exponential form of natural parameters
and sufficient statistics. Therefore, all of these probability distributions
belong to the e-family.

It is easy to verify that

−
1
2

xᵀΣ−1x =
(
−

1
2

xᵀx
)
· Σ−1

xᵀΣ−1µ = x ·
(
Σ−1µ

)
,

where · denotes element-wise multipli-
cation and summation, that is, the inner
product of two vectors or matrices.

Table 12.1: Some distributions reparam-
eterized as the canonical e-family form
with their natural parameters and suffi-
cient statistics.

fθ(x) λ = g(θ) x̄ = h(x) K(λ) A(x̄)
Univariate
Gaussian
N(x | µ,σ2) [

λ1︷︸︸︷
µ/σ2 ,

λ2︷︸︸︷
1/σ2 ] [x,−x2/2]

− 1
2λ

2
1/λ2

+ 1
2 ln(λ2) − 1

2 ln(2π)
Multivariate

Gaussian
N(x | µ,Σ)

[ λ1︷︸︸︷
Σ−1µ,

λ2︷︸︸︷
Σ−1 ]

[x,− 1
2 xxᵀ]

− 1
2λ
ᵀ
1λ
−1
2 λ1

+ 1
2 ln |λ2 | − d

2 ln(2π)

Gaussian
(mean only)
N(x | µ,Σ0) µ Σ−1

0 x − 1
2λ
ᵀΣ−1

0 λ

− d
2 ln(2π)
− 1

2 ln |Σ0 |

− 1
2 xᵀΣ−1

0 x

Multinomial
C ·

∏D
d=1 pxd

d

[
ln p1, · · · ,
ln pD

]
x 0 ln(C)

Table 12.1 lists the reparameterization results for some useful distributions
in machine learning. For instance, the third row considers a special multi-
variate Gaussian model with a known covariance matrix, where only the
Gaussian mean vector is treated as the model parameter. The fourth row
gives a reparameterization result for the multinomial distribution, where
the natural parameters are denoted as λ =

[
λ1 λ2 · · · λD

]
= g(p1, · · · , pD) =[

ln p1 ln p2 · · · ln pD

]
. For this reparameterization, we note that these nat-

ural parameters must satisfy the constraint
∑D

d=1 eλd = 1, which arises
from the sum-to-1 constraint of the original parameters pi .

An important property of the e-family is that almost all e-family distribu-
tions are unimodal, with only a small number of exceptions. Therefore,
all e-family distributions are considered to be mathematically tractable.
Moreover, we also note that the e-family is closed under multiplication.
In other words, the product of any two e-family distributions is still an
e-family distribution. This property is straightforward to prove from the
exponential form of the e-family distributions. On the other hand, we
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note that the e-family is not closed under addition. This immediately sug-
gests that a finite mixture of e-family distributions does not belong to the
e-family anymore.

12.1.2 Formal Definition of Mixture Models

We can now summarize this section with a formal definition of finite
mixture models. Throughout this book, a finite mixture model is de-
fined as a mixture model composed of M (∈ N) e-family distributions:
pθ(x) =

∑M
m=1 wm · fθm (x), where θ =

{
wm, θm |m = 1, 2, · · · , M

}
denotes all

parameters associated with the mixture model.

Under this definition, the model pθ(x) is formally called a finite mixture
model if the following two conditions hold:

1. All mixture weights are positive (0 < wm < 1, ∀m) and satisfy the
sum-to-1 constraint (i.e.,

∑M
m=1 wm = 1).

2. All component models fθm (x) (∀m) belong to the e-family.

It is fine for different components to take different functional forms in the
e-family. However, for simplicity, we normally assume that all component
models in a mixture model have the same functional form, only with dif-
ferent parameters θm in each component. As we have discussed, generally
speaking, pθ(x) is not an e-family distribution when M > 1.

The next section discusses how to learn all parameters θ in a mixture
model based on MLE.

12.2 Expectation-Maximization Method

Assume we have a training set of N samples D =
{
x1, x2, · · · , xN

}
, ran-

domly drawn from a complex multimodal distribution. If we want to use a
finite mixture model pθ(x) to approximate this unknown distribution, we
need to estimate all model parameters θ from the given training samples
in D.

pθ (x) =
M∑
m=1

wm · fθm (x).

First of all, we have to determine the value for M , namely, how many com-
ponents are in the mixture model. Unfortunately, there does not exist any
automatic method to effectively identify the correct number of components
from data. We will have to treat M as a hyperparameter and determine a
good value for M based on some trial-and-error experiments.
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12.2.1 Auxiliary Function: Eliminating Log-Sum

Once M is selected, we use MLE to learn all parameters in θ. As usual, we
write down the log-likelihood function for the mixture model as follows:

l(θ) =
N∑
i=1

ln pθ(xi) =
N∑
i=1

ln
( M∑
m=1

wm · fθm (xi)
)
. (12.2)

Unlike what we obtained for unimodal models, we are facing a huge
computational challenge here because the log-likelihood function of a
mixture model consists of some log-sum terms (highlighted in red in the
previous equation), which are mathematically awkward to handle. Given
that each component model is an e-family distribution, if we could manage
to switch the order of the logarithm and the summation in the previous
equation, then the logarithm will directly apply to each component model
so that it cancels out the exponential in each component model. The key
idea in the following derivation is to use some mathematical tricks to
switch the order of the logarithm and the summation to derive more
mathematically tractable results.

Hereafter, we use θ to denote model pa-
rameters as free variables of a function
and θ(n) to represent one particular set of
given parameters.

To do so, let us first treat index m of the mixture model in Eq. (12.1) as a
latent variable, which is essentially an unobserved random variable that
takes its value from a finite set of

{
1, 2, · · · , M

}
. Assuming we are given a

set of model parameters, denoted as

θ(n) =
{
w
(n)
m , θ(n)m |m = 1, 2, · · · , M

}
,

we can compute a conditional probability distribution of the latent variable
m based on each training sample xi in D as follows:

Pr(m | xi , θ(n)) =
w
(n)
m · f

θ(n)m
(xi)∑M

m=1 w
(n)
m · f

θ(n)m
(xi)

(∀m = 1, 2, · · · , M). (12.3)

We have
∑M

m=1 Pr(m | xi , θ(n)) = 1 for any xi .

Next, let us define an auxiliary function for θ as the following conditional
expectation over the latent variable m:

Refer to the definition of conditional expec-
tation in Section 2.2. Q(θ |θ(n)) =

N∑
i=1

Em

[ use θ here︷               ︸︸               ︷
ln

(
wm · fθm (xi)

) ��� xi , θ(n)
]
+C

=

N∑
i=1

M∑
m=1

ln
[
wm · fθm (xi)

]
· Pr(m | xi , θ(n)) +C, (12.4)

where C is a constant defined as the sum of the entropy of the conditional
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probability distributions:

C ∆
= H(θ(n) |θ(n)) = −

N∑
i=1

M∑
m=1

ln Pr(m | xi , θ(n))Pr(m | xi , θ(n)).

We can see that C is independent of the model variables θ. If we compare
the highlighted parts (in red) in Eq. (12.2) and Eq. (12.4), we can see
that the auxiliary function Q(θ |θ(n)) is constructed in such a way that
we have managed to switch the order of logarithm and summation to
eliminate the log-sum terms. As a result, the auxiliary function Q(θ |θ(n))
has a much simpler form than the original log-likelihood function l(θ).
More importantly, we can show that Q(θ |θ(n)) is also closely related to l(θ).
The following theorem formally summarizes three important properties
of the auxiliary function Q(θ |θ(n)), clearly elucidating how it is related to
the original log-likelihood function l(θ).

Theorem 12.2.1 The auxiliary function Q(θ |θ(n)) in Eq. (12.4) satisfies the
following three properties:

1. Q(θ |θ(n)) and l(θ) achieve the same value at θ(n):

Q(θ |θ(n))
���
θ=θ(n)

= l(θ)
���
θ=θ(n)

.

2. Q(θ |θ(n)) is tangent to l(θ) at θ(n):

∂Q(θ |θ(n))
∂θ

���
θ=θ(n)

=
∂l(θ)
∂θ

���
θ=θ(n)

.

3. For all θ , θ(n), Q(θ |θ(n)) is located strictly below l(θ):

Q(θ |θ(n)) < l(θ) (∀θ , θ(n)).

Proof:

Step 1: For any two random variables x and y, we can rearrange the Bayes
theorem into

p(y |x) =
p(x, y)
p(x)

=⇒ p(x) =
p(x, y)
p(y |x)

.

Step 2: We apply this to a joint distribution of m and x, represented by a
generative model pθ(m, x)with model parameters θ, so we have

pθ(x) =
pθ(m, x)

Pr(m|x, θ)
=⇒ ln pθ(x) = ln pθ(m, x) − ln Pr(m|x, θ).

Step 3: We multiply the conditional probability Pr(m|x, θ(n)) to both sides
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of the previous equation and sum over all m ∈
{
1, 2, · · · , M

}
, so we have

M∑
m=1

ln pθ(x) · Pr(m|x, θ(n)) =
M∑
m=1

ln pθ(m, x) · Pr(m|x, θ(n))

−

M∑
m=1

ln Pr(m|x, θ) · Pr(m|x, θ(n)).

The left-hand side (LHS) of the equation simplifies to

M∑
m=1

ln pθ(x) · Pr(m|x, θ(n)) = ln pθ(x)

because ln pθ(x) is independent of m, and
∑M

m=1 Pr(m|x, θ(n)) = 1.

Step 4: We substitute x with every training sample xi in D and sum over
all N samples, so we have

N∑
i=1

ln pθ(xi) =
N∑
i=1

M∑
m=1

ln pθ(m, xi) · Pr(m|xi , θ(n))

−

N∑
i=1

M∑
m=1

ln Pr(m|xi , θ) · Pr(m|xi , θ(n)).

Step 5: Note that the LHS equals to l(θ), and we have

pθ(m, xi) = Pr(m|θ)pθ(xi |m) = wm · fθm (xi).

Substituting Q(θ |θ(n)) in Eq. (12.4) into the previous equation, we have

By definition, in Eq. (12.4), we have

Q(θ |θ(n)) =

N∑
i=1

M∑
m=1

ln
[
wm · fθm (xi )

]
· Pr(m | xi ,θ(n))

−

N∑
i=1

M∑
m=1

ln Pr(m | xi ,θ(n))Pr(m | xi ,θ(n)).

According to Theorem 2.3.1, the Kullback–
Leibler (KL) divergence is always nonneg-
ative, and it equals to 0 only when two
distributions are identical.

l(θ) = Q(θ |θ(n)) +

[
N∑
i=1

M∑
m=1

ln Pr(m|xi , θ(n))Pr(m|xi , θ(n))

−

N∑
i=1

M∑
m=1

ln Pr(m|xi , θ)Pr(m|xi , θ(n))

]
(12.5)

= Q(θ |θ(n)) +
N∑
i=1

[ M∑
m=1

ln
(Pr(m|xi , θ(n))

Pr(m|xi , θ)

)
Pr(m|xi , θ(n))︸                                           ︷︷                                           ︸

KL
(

Pr(m |xi ,θ(n)) | | Pr(m |xi ,θ)
)
≥0

]

≥ Q(θ |θ(n)).

Based on the property of the KL-divergence, we know that equality holds
only when θ = θ(n). Therefore, Properties 1 and 3 are proved.

Step 6: From Eq. (12.5), we have
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Figure 12.3: An illustration of how the
auxiliary function Q(θ |θ(n)) is related to
the original log-likelihood function l(θ).

∂l(θ)
∂θ

=
∂Q(θ |θ(n))

∂θ
−
∂H(θ |θ(n))

∂θ
, Here, we denote

H(θ |θ(n)) =

N∑
i=1

M∑
m=1

ln Pr(m |xi ,θ)Pr(m |xi ,θ(n)).

with

∂H(θ |θ(n))
∂θ

����
θ=θ(n)

=

N∑
i=1

[ M∑
m=1

Pr(m|xi , θ(n))
Pr(m|xi , θ)

∂ Pr(m|xi , θ)
∂θ

] �����
θ=θ(n)

=

N∑
i=1

[ M∑
m=1

∂ Pr(m|x, θ)
∂θ

] �����
θ=θ(n)

=

N∑
i=1

∂

∂θ

[ M∑
m=1

Pr(m|x, θ)
] ����
θ=θ(n)

=

N∑
i=1

∂

∂θ

[
1

] ���
θ=θ(n)

= 0.

This proves Property 2. �

As we know, the log-likelihood function l(θ) is a function of model param-
eters θ, spanning the whole model space. At the same time, the auxiliary
function Q(θ |θ(n)) is also a function of θ, but it must be constructed based
on a given model θ(n). Their relation can be intuitively illustrated in Figure
12.3, where l(θ) is presumably a complex function because of the log-sum
terms, but Q(θ |θ(n)) is a relatively simple function that eliminates those
log-sum terms. We may construct an auxiliary function for any given
model θ(n). As shown in Figure 12.3, the auxiliary function is tangent to
l(θ) at the construction point θ(n), staying below l(θ) everywhere else.

12.2.2 Expectation-Maximization Algorithm

The auxiliary function Q(θ |θ(n)) is significantly simpler than the original
log-likelihood function l(θ) because it has successfully eliminated all log-
sum terms. As a result, it should be easier to maximize Q(θ |θ(n)) than l(θ)
itself. In fact, we can show that Q(θ |θ(n)) is a concave function because all
component models belong to the e-family (see Exercise Q12.4). In many
cases, we can even derive a closed-form solution to explicitly solve this
optimization problem:

θ(n+1) = arg max
θ

Q(θ |θ(n)).

Because of the nice properties of the auxiliary function in Theorem 12.2.1,
we can prove that the solution θ(n+1) is guaranteed to improve the original
log-likelihood function as well. Based on this, a famous optimization
method, called the expectation-maximization (EM) algorithm [52], has been
proposed to solve MLE for mixture models. As shown in Algorithm 12.12,
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Figure 12.4: An illustration of how the
EM algorithm works.

the EM algorithm is an iterative optimization method, with each iteration
being composed of two steps. In the first step, we construct auxiliary
function Q(θ |θ(n)) based on the current model θ(n), as in Eq. (12.4). This
step is usually called the expectation step (E-step) because the auxiliary
function is defined based on a conditional expectation over the latent
variable. In the second step, we maximize the auxiliary function to derive a
new model θ(n+1). This step is usually called the maximization step (M-step).
Furthermore, we can construct another auxiliary function based on θ(n+1)

to continue another E-step and M-step iteration, as depicted in Figure
12.4. If we continue this process over and over, the EM algorithm will
eventually converge to a local maximum of the log-likelihood function.

Algorithm 12.12 EM algorithm

initialize θ(0), set n = 0
while not converged do

E-step:

Q(θ |θ(n)) =
N∑
i=1

Em

[
ln

(
wm · fθm (xi)

) ��� xi , θ(n)]
M-step:

θ(n+1) = arg max
θ

Q(θ |θ(n))

n = n + 1
end while

Here, let us present some key theoretical results regarding the conver-
gence of the EM algorithm. The important thing is to show why the new
model parameters θ(n+1), derived by maximizing the auxiliary function,
are guaranteed to improve the log-likelihood function.

Theorem 12.2.2 Each EM iteration guarantees to improve l(θ):

l(θ(n+1)) ≥ l(θ(n)).

Furthermore, the improvement of the log-likelihood function is not less than
the improvement of the auxiliary function:

l(θ(n+1)) − l(θ(n)) ≥ Q(θ |θ(n))
���
θ=θ(n+1)

−Q(θ |θ(n))
���
θ=θ(n)

.

Proof:

Step 1: According to Property 1 in Theorem 12.2.1, we have

l(θ(n)) = Q(θ |θ(n))
���
θ=θ(n)

.
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Step 2: Because we have maximized the auxiliary function in the M-step,
we have

Q(θ |θ(n))
���
θ=θ(n+1)

≥ Q(θ |θ(n))
���
θ=θ(n)

.

Step 3: Based on Property 3 in Theorem 12.2.1, we have

l(θ(n+1)) ≥ Q(θ |θ(n))
���
θ=θ(n+1)

.

Step 4: If we put the previous three statements together, we have

l(θ(n+1)) ≥ Q(θ |θ(n))
���
θ=θ(n+1)

≥ Q(θ |θ(n))
���
θ=θ(n)

= l(θ(n)).

Therefore, we have proved l(θ(n+1)) ≥ l(θ(n)).

Step 5: Based on the previous inequality, it is also easy to show that

l(θ(n+1)) − l(θ(n)) ≥ Q(θ |θ(n))
���
θ=θ(n+1)

−Q(θ |θ(n))
���
θ=θ(n)

.

�

Theorem 12.2.2 ensures the correctness of the EM algorithm. In other
words, it guarantees that the EM algorithm will converge to a local opti-
mum point of the likelihood function. Furthermore, because the improve-
ment of the log-likelihood function is guaranteed to be more than the
improvement of the auxiliary function, it suggests that the convergence
rate of the EM algorithm is fairly fast.

If we compare the EM algorithm with other iterative optimization meth-
ods such as gradient descent, the EM algorithm has two major advantages.
First, unlike the sensitive learning rates that must be manually set in
gradient-descent methods, the EM algorithm does not rely on any hyper-
parameters. As a result, it is much easier to implement the EM algorithm,
and it normally delivers much stabler results. Second, because of Theorem
12.2.2, the convergence rate of the EM algorithm is much faster than that
of gradient descent. On the other hand, gradient-descent methods are
generic for any differentiable objective functions, whereas the EM algo-
rithm is restricted to some special forms of objective functions involving
log-sum terms, such as the log-likelihood functions of mixture models.
Generally speaking, for all cases where the EM algorithm is applicable,
the EM algorithm is strongly preferred to any other iterative optimization
methods.

Note that the EM algorithm does not specify how to choose the initial
model θ(0) at the beginning and how to solve the maximization problem
in the M-step. In the following sections, we will use two popular mixture
models, namely, Gaussian mixture models (GMMs) and hidden Markov models
(HMMs), to explain how to address these issues.
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Figure 12.5: An illustration of the use of
a GMM to approximate a multimodal
distribution with four peaks in two-
dimensional (2D) space.

12.3 Gaussian Mixture Models

GMMs are probably the most popular mixture models in machine learning,
in which we choose multivariate Gaussian models as the component mod-
els. Unlike the unimodal models in Chapter 11, GMMs are very powerful
generative models that are often used to approximate complex multi-
modal distributions in high-dimensional spaces. In a GMM, a number of
different multivariate Gaussians can collectively capture multiple peaks
in a complex probability distribution, as illustrated in Figure 12.5.

Generally speaking, a GMM for x ∈ Rd can be represented as follows:
N(x | µm ,Σm) =

1
(2π)d/2 |Σm |

1/2 e−
(x−µm )

ᵀΣm−1 (x−µm )
2 . pθ(x) =

M∑
m=1

wm ·N(x | µm,Σm), (12.6)

where θ =
{
wm, µm,Σm |m = 1, 2, · · · , M

}
denotes all parameters in the

GMM; all mixture weights wm satisfy
∑M

m=1 wm = 1; and µm and Σm denote
the mean vector and the covariance matrix of the mth Gaussian component,
respectively. The computational complexity of calculating pθ(x) for each
x ∈ Rd is roughly estimated as O(M · d2).This estimation assumes all determinants

|Σm | and the inverse matrices Σ−1
m are pre-

computed and stored.
If M is large enough, GMMs represent a rather broad class of probability
distributions. According to the theoretical results of Sorenson and Alspach
[229] and Plataniotis and Hatzinakos [187], for any smooth probability
density function, there exists a GMM (with possibly many components)
that approximates the given distribution up to any arbitrary precision.
Therefore, GMMs are sometimes called a universal approximator of proba-
bility densities.

Given a set of training data D =
{
x1, x2, · · · , xN

}
, let us consider how to

learn a GMM from these samples. Similar to any other mixture model, the
number of components, M , must be manually prespecified as a hyperpa-
rameter. Once M is fixed, we will be able to use the EM algorithm to learn
all model parameters θ associated with the GMM. In the following, we
will investigate how to apply the two EM steps to the MLE of GMMs.

In the E-step, we need to construct the auxiliary function as in Eq. (12.4)
based on a given set of model parameters: θ(n) =

{
w
(n)
m , µ(n)m ,Σ(n)m |m =

1, 2, · · · , M
}
. To do this, we just need to compute the conditional probabili-

ties of the latent variable m based on the model parameters θ(n) and each
training sample (i.e., Pr(m | xi , θ(n)) for all m = 1, · · · , M and i = 1, · · · , N).
For notation convenience, we use ξ(n)m (xi) to denote these conditional prob-
abilities. Furthermore, given the GMM defined in Eq. (12.6), we compute
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the conditional probabilities in Eq. (12.3) as follows:

ξ
(n)
m (xi)

∆
= Pr(m|xi , θ(n)) =

w
(n)
m N(xi | µ(n)m ,Σ(n)m )∑M

m=1 w
(n)
m N(xi | µ(n)m ,Σ(n)m )

(12.7)

(∀m = 1, · · · , M ; ∀i = 1, · · · , N).

Substituting these probabilities into Eq. (12.4), we then construct the auxil-
iary function for GMMs as follows:

Q(θ |θ(n)) =
N∑
i=1

M∑
m=1

[
lnwm −

ln |Σm |
2

−
(xi − µm)

ᵀΣ−1
m (xi − µm)

2

]
ξ
(n)
m (xi) +C ′.

(12.8)

Next, in the M-step, we need to maximize the auxiliary function Q(θ |θ(n))
with respect to all model parameters θ =

{
wm, µm,Σm |m = 1, 2, · · · , M

}
.

As all log-sum terms have been eliminated, the auxiliary function actually
has a functional form similar to the multivariate Gaussians in Eq. (11.2)
with respect to all µm and Σm and the multinomials in Eq. (11.7) with
respect to all wm.

For all µm and Σm (m = 1, 2, · · · , M), we vanish their partial derivatives to
derive their updating formulae as follows: ∂Q(θ |θ(n))

∂µm

=

N∑
i=1

Σ−1
m

(
µm − xi

)
ξ
(n)
m (xi ).

∂Q(θ |θ(n))
∂µm

= 0 (m = 1, 2, · · · , M)

=⇒ µ(n+1)
m =

∑N
i=1 ξ

(n)
m (xi) xi∑N

i=1 ξ
(n)
m (xi)

(12.9)

∂Q(θ |θ(n))
∂Σm

= 0 (m = 1, 2, · · · , M)

=⇒ Σ
(n+1)
m =

∑N
i=1 ξ

(n)
m (xi) (xi − µ

(n+1)
m )(xi − µ(n+1)

m )ᵀ∑N
i=1 ξ

(n)
m (xi)

. (12.10)

∂Q(θ |θ(n))
∂Σm

=

−
1
2
(Σ
ᵀ
m)
−1

N∑
i=1

ξ
(n)
m (xi ) +

1
2
(Σ
ᵀ
m)
−1

[ N∑
i=1

ξ
(n)
m (xi )(xi − µm)(xi − µm)

ᵀ
]
(Σ
ᵀ
m)
−1.

As for mixture weights wm (m = 1, 2, · · · , M), we introduce a Lagrange
multiplier λ for the constraint

∑M
m=1 wm = 1 and derive the updating

formula for each wm as follows:

Note that ∀i, n

M∑
m=1

ξ
(n)
m (xi ) = 1.

∂

wm

[
Q(θ |θ(n)) − λ

( M∑
m=1

wm − 1
)]
= 0

=⇒ w
(n+1)
m =

∑N
i=1 ξ

(n)
m (xi)

N
. (12.11)
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Finally, Algorithm 12.13 summarizes the EM algorithm for GMMs. In the
E-step, we use Eq. (12.7) to update all conditional probabilities based on
the current model parameters θ(n). Next, in the M-step, the conditional
probabilities are used to update all model parameters, as in Eqs. (12.9),
(12.10), and (12.11), to derive a new set of model parameters θ(n+1). This
training procedure is repeated until it converges.

Algorithm 12.13 EM Algorithm for GMMs

initialize
{
w
(0)
m , µ(0)m ,Σ(0)m

}
, set n = 0

while not converged do
E-step: use Eq. (12.7) for all m = 1, · · · , M and i = 1, · · · , N :{

w
(n)
m , µ(n)m ,Σ(n)m

}
∪

{
xi

}
−→

{
ξ
(n)
m (xi)

}
M-step: use Eqs. (12.9), (12.10), and (12.11) for all m = 1, · · · , M :{

ξ
(n)
m (xi)

}
∪

{
xi

}
−→

{
w
(n+1)
m , µ(n+1)

m ,Σ(n+1)
m

}
n = n + 1

end while

12.3.1 K-Means Clustering for Initialization

As we have seen, the EM algorithm in Algorithm 12.13 does not specify
how to choose the initial model parameters

{
w
(0)
m , µ(0)m ,Σ(0)m

}
. In practice,

it is usually better to use some simple bootstrapping methods to initial-
ize them rather than random initialization. For GMMs, we usually use
the k-means clustering method to partition all N training samples into M
homogeneous clusters. Then, each cluster is used to train a multivariate
Gaussian separately, as in Section 11.1. These Gaussian models are used
as the initial GMM parameters θ(0) in the EM algorithm. This section
briefly introduces the k-means clustering method because it is a popular
unsupervised learning algorithm in machine learning [147, 66].

Algorithm 12.14 shows a top-down version of the k-means clustering
algorithm, which takes a training set D of N samples as input and eventu-
ally partitions D into M (M � N) disjoint clusters as output. In k-means
clustering, each cluster is represented by its centroid, that is, the mean
of all data samples assigned to this cluster. At the beginning, we start
with one cluster by randomly initiating the centroid of the first cluster
C1. At each iteration, we first reassign all training samples to the nearest
cluster based on which centroid each training sample is closest to. Then,
we recompute the centroids for all clusters in the update step. These two
steps are repeated until the assignments do not change anymore. After
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Algorithm 12.14 Top-Down K-Means Clustering

Input: D =
{
x1, x2, · · · , xN

}
Output: M disjoint clusters: C1 ∪C2 · · · ∪CM = D

k = 1
initialize the centroid of C1
while k ≤ M do

repeat
assign each xi ∈ D to the nearest cluster among C1, · · · , Ck

update the centroids for the first k clusters: C1, · · · , Ck

until assignments no longer change
split: split any cluster into two clusters
k = k + 1

end while

that, if the total number of current clusters is still less than M , we choose a
cluster, such as the one with the largest number of samples or the largest
variance, and randomly split its centroid into two. We then go back to
repeat the assignment and update steps until the assignments stabilize
again. The procedure is repeated until we have M stable clusters.

After this k-means bootstrapping, the training samples in each cluster
are used to learn a multivariate Gaussian model separately, as in Section
11.1 (see margin note). Meanwhile, the mixture weights for all Gaussian
components can be estimated from the number of samples in each cluster.
These parameters are used as the initial model parameters

{
w
(0)
m , µ(0)m ,Σ(0)m

}
in Algorithm 12.13, and then the EM algorithm is used to further refine all
GMM parameters.

For all m = 1, 2, · · · , M , we have the fol-
lowing:

w
(0)
m =

|Cm |

N

µ(0)m =
1
|Cm |

∑
xi∈Cm

xi

Σ
(0)
m =

1
|Cm |

∑
xi∈Cm

(
xi − µ

(0)
m

) (
xi − µ

(0)
m

)ᵀ.

12.4 Hidden Markov Models

As we extend Gaussian models to GMMs, the modeling capacity of gen-
erative models can be significantly enhanced. However, GMMs are only
suitable for static patterns that can be represented with fixed-size feature
vectors. Here, we will investigate how to use the same idea of mixture
models to improve the modeling capacity for variable-length sequences.
Section 11.3 introduced Markov chain models as a generative model for
sequences. As we will show later, the Markov chain model is a fairly weak
unimodal model for sequences because it belongs to the e-family. This
section presents a more powerful generative model for sequences, called a
hidden Markov model (HMM). We will first consider some basic concepts
related to HMMs from the perspective of finite mixture models, and then
we will explore several important algorithms that efficiently solve key
computation problems in HMMs.
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Figure 12.6: An illustration of Markov
chain model of three Markov states
{ω1,ω2,ω3 }, where states can be directly
observed.

Figure 12.7: An illustration of Markov
chain model of three Markov states
{ω1,ω2,ω3 }, where states are not directly
observed, but each state deterministically
generates a unique observation symbol
(ω1 → v1,ω2 → v2,ω3 → v3).

Figure 12.8: An illustration of a discrete
HMM of three states and four distinct ob-
servation symbols.

12.4.1 HMMs: Mixture Models for Sequences

HMMs extend Markov chain models in a similar fashion as GMMs extend
single Gaussian models. Let us revisit Markov chain models with a simple
example of three states {ω1,ω2,ω3}, as shown in Figure 12.6. If we assume
states are directly observed, then this Markov chain model will generate
some state sequences, such as s =

{
ω2ω1ω1ω3

}
. As explained in Section

11.3, we can use transition probabilities
{
ai j

}
to compute the probability

of observing any sequence of this kind as

Pr(s) = Pr(ω2ω1ω1ω3) = π2 × a21 × a11 × a13,

where π2 = p(ω2) denotes the initial probability that a sequence starts from
state ω2.

Another equivalent setting for Markov chain models is that we assume
states are not directly observed, but each state deterministically generates
a unique observation symbol, such as s1 → v1, s2 → v2, s3 → v3 in Figure
12.7. In this case, this Markov chain model will generate some observation
sequences, such as o =

{
v2v1v1v3

}
. Although we do not directly observe

the underlying state sequence, we can always deduce the correspond-
ing state sequence from each observation sequence because each state
always generates a unique observation symbol. Therefore, we can simi-
larly compute the probability of observing such an observation sequence
as follows:

Pr(o) = Pr(v2v1v1v3) = Pr(ω2ω1ω1ω3) = π2 × a21 × a11 × a13.

These examples, along with Eq. (11.9), show that the probability of observ-
ing a sequence in Markov chain models is a product of many conditional
probabilities. If we choose e-family distributions for these conditional
probabilities (e.g., multinomial), the overall Markov chain model is also
an e-family distribution. Hence, Markov chain models are suitable for
modeling sequences following some simple unimodal distributions.

Next, we will consider expanding this simple sequence model based on the
idea of finite mixture models. The most important extension is to assume
that each state can generate all possible symbols based on a unique proba-
bility distribution rather than always producing the same unique symbol
as in Figure 12.7. This leads to a new setting, as shown in Figure 12.8. In
this case, we have three states

{
ω1,ω2,ω3

}
but four distinct observation

symbols
{
v1, v2, v3, v4

}
. Note that the number of distinct observations is

not necessarily equal to the number of unique states here. Each state may
generate any symbol based on a different probability. For example, state
ω2 may generate symbol v1 with probability b21, symbol v2 with b22, and
so on. Similarly, state ω1 may also generate symbol v1 with probability b11,
symbol v2 with b12, and so on. In this model, the mechanism to generate an
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observation sequence is a doubly embedded stochastic process, in which
it first randomly traverses different states according to transition probabil-
ities (i.e.,

{
ai j

}
) and then randomly generates a symbol at each state based

on a probability distribution associated with the state (i.e.,
{
bik

}
).

Furthermore, we adopt the following two assumptions for the stochastic
process:

1. Markov assumption: The state transition follows a first-order Markov
chain. In other words, the probability of being a state only depends
on the previous state, which can be fully specified by the transition
probability between them (i.e., ai j = p(ωj |ωi)).

2. Output independence assumption: The probability of generating an
observation only depends on the current state (i.e., bik = p(vk |si)).
Given the current state, the observation generated from this state is
independent of other states as well as all other observations in the
sequence.

Under these assumptions, if we observe an observation sequence o ={
v2v1v1v3

}
, and meanwhile we happen to know its underlying state se-

quence s =
{
ω2ω1ω1ω3

}
, we can easily compute the probability of generat-

ing o along this state sequence s as follows:

Pr(o, s) = π2 × b22 × a21 × b11 × a11 × b11 × a13 × b33. (12.12)

It is straightforward to verify that this model also belongs to the e-family,
and it has no fundamental difference from the Markov chain model in
Figure 12.7.

Given the model in Figure 12.8, the ob-
servation sequence o =

{
v2v1v1v3

}
may

be generated from in total 34 = 81 differ-
ent state sequences, each of which has a
different probability. In addition to s ={
ω2ω1ω1ω3

}
, we can give two more ex-

amples here:

s′ =
{
ω1ω2ω2ω3

}
,

with

Pr(o, s′) = π1b12a12b21a22b21a23b33,

and
s′′ =

{
ω3ω1ω2ω1

}
,

with

Pr(o, s′′) = π3b32a31b11a12b21a21b13.

However, if we further assume that we can only observe the observation
sequence o =

{
v2v1v1v3

}
while its underlying state sequence is hidden

from us, unlike the model in Figure 12.7, we cannot uniquely determine
the underlying state sequence from an observation sequence alone. In this
setting, the same observation sequence can actually be generated from
many different state sequences. Each of these different state sequences
may generate the same observation sequence with a different probability,
similar to what is computed in Eq. (12.12) (see margin note). If the under-
lying state sequence is hidden, we will have to treat it as a latent variable;
the probability of observing an observation sequence o without knowing
its underlying state sequence must sum over all possible state sequences.
In other words, the probability of observing any observation sequence is
computed as follows:

Pr(o) =
∑
s∈S

Pr(o, s), (12.13)

where S is a set of all possible state sequences that may generate o, and
each Pr(o, s) is computed in the same way as in Eq. (12.12). The models in
this equation are HMMs. In the foregoing discussion, we have assumed
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Figure 12.9: An illustration of a continu-
ous density HMM of three states, where
each state is associated with a continuous
density function.

each observation sequence o consists of discrete symbols. Thus, they are
often called discrete HMMs. The methodology of HMMs can be extended
to deal with sequences of continuous observations. As shown in Figure
12.9, each state is associated with a separate continuous density function.
For example, when being in state ω2, a continuous vector x ∈ Rd is gen-
erated as an observation based on the probability density function p2(x).
Assuming that we have observed a sequence of continuous observations
o =

{
x1x2x3x4

}
, along with its underlying state sequence s =

{
ω2ω1ω1ω3

}
,

the probability of generating o along s is similarly computed as

Pr(o, s) = π2 × p2(x1) × a21 × p1(x2) × a11 × p1(x3) × a13 × p3(x4).

When the underlying state sequence is hidden from us, we will have to
sum this probability over all possible state sequences in the same way as
Eq. (12.13), which is usually called a continuous density HMM. In practice,
we may choose any probability density function pi(x) for each state, such
as Gaussian models or even GMMs.

In discrete HMMs, we have

Pr(o, s) =

π2a21a11a13︸          ︷︷          ︸
Pr(s)

× b22b11b11b33︸           ︷︷           ︸
p(o|s)

.

In continuous density HMMs, we have

Pr(o, s) =

π2a21a11a13︸          ︷︷          ︸
Pr(s)

× p2(x1)p1(x2)p1(x3)p3(x4)︸                            ︷︷                            ︸
p(o|s)

.

In either discrete or continuous density HMMs, we can decompose the
joint probability as follows:

Pr(o, s) = Pr(s) · p(o|s),

where Pr(s) denotes the probability of traversing one particular state
sequence s, which can be computed based on the initial probabilities and
transition probabilities, and p(o | s) indicates the probability of generating
an observation sequence o along this state sequence s when s is already
given, which is computed based on all state-dependent density functions,
that is,

{
bik

}
in discrete HMMs and pi(x) in continuous density HMMs.

Furthermore, we can easily verify the following:∑
s∈S

Pr(s) = 1.

Therefore, both discrete HMMs and continuous density HMMs (assume
that each density function pi(x) is chosen from the e-family) can be viewed
as finite mixture models, as defined in Section 12.1.2, because an HMM
can be represented as follows:

Pr(o) =
∑
s∈S

Pr(s) · p(o|s), (12.14)

where the hidden state sequence s is treated as the mixture index, and
Pr(s) is treated as the mixture weights. Given any state sequence s, the con-
ditional distribution p(o|s) can be viewed as a component model, which
belongs to the e-family because it can be expressed as a product of many
simple e-family distributions.
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Finally, let us summarize our discussions with a more generic definition
for HMMs. As we have described, HMMs can be viewed as finite mixture
models for sequences. Each observation sequence is generated from a dou-
bly embedded stochastic process involving some hidden state sequences,
and the Markov and output independence assumptions are adopted in
the model. Generally speaking, an HMM, denoted as Λ, consists of the
following basic elements:

1. Ω =
{
ω1,ω2, · · ·ωN

}
: a set of N Markov states.

2. π =
{
πi

�� i = 1, 2, · · · , N
}
: a set of initial probabilities of all states as{

π(ω1), π(ω2), · · · π(ωN )
}
, each of which indicates the probability that

any state sequence will start from each state. We denote π(ωi) as πi
for short.

Note that we have
∑N

i=1 πi = 1.

3. A =
{
ai j

�� 1 ≤ i, j ≤ N
}
: a set of state transition probabilities a(ωi ,ωj )

going from state ωi to state ωj for any pair of states in Ω. For simplic-
ity, we denote a(ωi ,ωj ) as ai j .

We have
N∑
j=1

ai j = 1

for any i = 1, 2, · · · , N .
4. B =

{
bi(x)

�� i = 1, 2, · · · , N
}
: a set of state-dependent probability

distributions b(x|ωi) for all ωi ∈ Ω. We also denote b(x|ωi) as bi(x)
for short. Each bi(x) specifies how likely it is for an observation to be
generated from state ωi . We will have to choose different probability
functions for bi(x) depending on whether x is discrete or continuous.

The first three parameters {Ω, π, A} define a Markov chain model, and
they also jointly specify the topology of an HMM. In some large HMMs
involving many states, all allowed state transitions may be sparse. In other
words, a valid state sequence is only allowed to start from a small subset
of Ω, and meanwhile, each state can only transit to a very small subset
in Ω. In these cases, it may be more convenient to represent {Ω, π, A}
using a directed graph, where each node represents a state and each
arc represents an allowed state transition, along with the corresponding
transition probability.

The HMM Λ = {Ω, π, A, B} specified previously can be used to compute
the probability of observing any sequence of T observations:

o =
{
x1, x2, · · · , xT

}
.

Because the underlying state sequence is hidden, we will have to sum
over all possible state sequences of length T that may produce o, denoted
as s =

{
s1, s2, · · · , sT

}
, with each st ∈ Ω. Therefore, we have the probability

distribution of o given by the HMM as follows:

pΛ(o) =
∑

s
pΛ(o, s) =

∑
s1 · · ·sT

π(s1)b(x1 |s1)

T∏
t=2

a(st−1, st )b(xt |st )

=
∑

s1 · · ·sT

π(s1)b(x1 |s1)a(s1, s2)b(x2 |s2) · · · a(sT−1, sT )b(xT |sT ). (12.15)
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HMMs were originally studied in the field of statistics under the name
probabilistic functions of Markov chains [16, 17, 15], and the terminology hid-
den Markov models was later adopted widely in engineering [194] for many
real-world applications, such as speech, handwriting, gesture recognition,
natural language processing, and bioinformatics. The scale of an HMM
may vary from a toy example of several states to a tremendous number
of states. As we will see later, because efficient algorithms for solving all
computation problems in HMMs exist, the HMM is one of a few machine
learning methods that can actually be applied to large-scale real-world
tasks. For example, some huge HMMs consisting of over millions of states
are usually used to solve large-vocabulary speech-recognition problems
[256, 173, 218].

In the following, let us investigate how to solve three major computation
problems for HMMs, namely, evaluation, decoding, and training problems.
Because of the structural constraints specified by the two HMM assump-
tions, fortunately, we are able to derive very efficient algorithms for solving
all of these problems.

12.4.2 Evaluation Problem: Forward–Backward Algorithm

The evaluation problem for HMMs is related to how to compute pΛ(o)
in Eq. (12.15) for any observation sequence o when all HMM parameters
Λ are given. As opposed to GMMs, it is prohibitive for us to compute
the summation in Eq. (12.15) by any brute-force method. The reason is
that the number of different state sequences is exponential to the length
of a sequence. In an ergodic HMM structure, as in Figure 12.9, we can
estimate that the number of different state sequences that could generate
a sequence of T observations is roughly O(NT ). This number is extremely
large in any meaningful case. For example, even for a small HMM of N = 5
states to generate a sequence of T = 100 observations, we will have to sum
over approximately 1070 different state sequences in Eq. (12.15).

Note that
5100 ≈ 1070.

However, the good news is that HMMs adopt the Markov and output
independence assumptions, allowing us to factor the joint probability
pΛ(o, s) into a product of many locally dependent conditional probabili-
ties, as in Eq. (12.15). This further enables us to use an efficient dynamic
programming method to compute this summation recursively from left to
right, as follows:∑

s1 · · ·sT

π(s1)b(x1 |s1)︸          ︷︷          ︸
α1(s1)

a(s1, s2)b(x2 |s2) · · · a(sT−1, sT )b(xT |sT )
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Figure 12.10: An illustration of the HMM
forward algorithm running in a 2D lat-
tice, where each node represents a partial
probability αt (j).

=
∑

s2 · · ·sT

( N∑
s1=1

α1(s1)a(s1, s2)b(x2 |s2)

)
︸                                ︷︷                                ︸

α2(s2)

a(s2, s3) · · · a(sT−1, sT )b(xT |sT )

=
∑

s3 · · ·sT

( N∑
s2=1

α2(s2)a(s2, s3)b(x3 |s3)

)
︸                                ︷︷                                ︸

α3(s3)

a(s3, s4) · · · a(sT−1, sT )b(xT |sT )

...

=
∑
sT

( N∑
sT−1=1

αT−1(sT−1)a(sT−1, sT )b(xT |sT )
)

︸                                               ︷︷                                               ︸
αT (sT )

=

N∑
sT=1

αT (sT ).

This procedure computes pΛ(o) by repeatedly performing T rounds of
summations. As a result, the computational complexity is dramatically
reduced to O(T × N2). The dynamic programming algorithm to perform
this recursive computation is often called the forward algorithm because it
proceeds from the beginning of a sequence until the end. All partial sums
αt (st ) in this procedure are called forward probabilities. We may represent
these forward probabilities for all t = 1, · · · , T and i = 1, · · · , N as

αt (i)
∆
= αt (st )

���
st=ωi

The physical meaning of αt (i) is the probability of observing the partial
observation sequence up to time t (i.e., x1 · · · xt ) when traversing all possi-
ble partial state sequences up to t − 1 but stopping at state ωi at t, namely,
αt (i) = Pr(x1 · · · xt , st = ωi |Λ).

This forward procedure can be represented by an N ×T lattice, as shown
in Figure 12.10, where each row corresponds to a state, each column corre-
sponds to a time instance, and each node represents a forward probability
αt (i). We first initialize all nodes in the first column as α1(s1), and then all
nodes in the next column can be computed by summing all nodes in the
previous column, as follows:

αt ( j) =
N∑
i=1

αt−1(i)ai jbj (xt ).

It proceeds recursively from left to right for all columns. At last, the
evaluation probability pΛ(o) is computed by summing all nodes in the last
column:

pΛ(o) =
N∑
i=1

αT (i). (12.16)

Moreover, we can also conduct the recursive summation from the end of
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Figure 12.11: An illustration of the HMM
backward algorithm running in a 2D lat-
tice, where each node represents a partial
probability βt (j).

a sequence and move backward to the beginning (see margin note). This
procedure is called the backward algorithm. The computational complexity
of the backward algorithm is the same as that of the forward algorithm.
All partial sums βt (st ) in this procedure are called backward probabilities.
We similarly denote

Backward recursion is conducted as fol-
lows:∑

s1 ···sT

π(s1)b(x1 |s1) · · · a(sT−1, sT )

b(xT |sT )

=
∑

s1 ···sT−1 π(s1) · · ·(∑
sT

a(sT−1, sT )b(xT |sT )
)

︸                               ︷︷                               ︸
βT−1(sT−1)

...

=
∑

s1 π(s1)b(x1 |s1)(∑
s2

a(s1, s2)b(x2 |s2)β2(s2)

)
︸                                 ︷︷                                 ︸

β1(s1)

=
∑

s1 π(s1)b(x1 |s1)β1(s1).

βt (i)
∆
= βt (st )

���
st=ωi

for all t = 1, · · ·T ; i = 1, · · · , N .

The physical meaning of βt (i) is the probability of observing the partial
sequence xt+1 · · · xT by starting from state ωi at t and then traversing all
partial state sequences until the end of this sequence, which is usually
denoted as βt (i) = Pr(xt+1 · · · xT | st = ωi ,Λ). Similarly, the backward al-
gorithm can be represented by the lattice shown in Figure 12.11. In this
case, we first initialize all nodes in the last column and then recursively
compute all columns by working backward until the first one. After that,
the evaluation probability pΛ(o) is computed by summing all nodes in the
first column as follows:

pΛ(o) =
N∑
i=1

πibi(x1)β1(i). (12.17)

Finally, we can summarize both forward and backward algorithms as
shown in Algorithm 12.15. Given any HMM Λ, for any observation se-
quence o =

{
x1, x2, · · · xT

}
, the forward–backward Algorithm 12.15 will

yield all forward and backward probabilities as output:{
αt (i), βt (i)

�� t = 1, 2, · · · , T , i = 1, 2, · · · , N
}
.

Once we have these partial probabilities, we can derive pΛ(o) using either
the forward probabilities, as in Eq. (12.16), or the backward probabilities,
as in Eq. (12.17).

Moreover, we can also compute pΛ(o) by combining the forward and
backward probabilities at any time t as follows:

pΛ(o) =
N∑
i=1

αt (i)βt (i) (∀t = 1, 2, · · · , T). (12.18)

This corresponds to the cases where we use the forward procedure to
compute the initial partial sequence up to time t and then use the backward
procedure to compute the remaining part of the sequence. Refer to Exercise
Q12.8 for more details on this.



12.4 Hidden Markov Models 279

Algorithm 12.15 HMM Forward–Backward Algorithm

Input: an HMM Λ =
{
Ω, π, A, B

}
and a sequence o =

{
x1, x2, · · · xT

}
Output:

{
αt (i), βt (i)

�� t = 1, · · · , T , i = 1, · · · , N
}

initiate α1( j) = πjbj (x1) for all j = 1, 2 · · · , N
for t = 2, 3, · · · , T do

for j = 1, 2, · · · , N do
αt ( j) =

∑N
i=1 αt−1(i)ai jbj (xt )

end for
end for
initiate βT ( j) = 1 for all j = 1, 2 · · · , N
for t = T − 1, · · · , 1 do

for i = 1, 2, · · · , N do
βt (i) =

∑N
j=1 ai jbj (xt+1)βt+1( j)

end for
end for

Figure 12.12: An illustration of the HMM
Viterbi algorithm running from t − 1 to
t in a 2D lattice, where each node repre-
sents a partial probability γt (j).

Figure 12.13: An illustration of back-
tracing the Viterbi path from the back-
tracking pointers. The Viterbi path s∗ ={
ω1 ω2 ω3 ω3 ω2

}
is uncovered by the

solid arrows, whereas the dashed arrows
are not used. Along the most probable
path, x1 is generated at state ω1 in Figure
12.9, x2 at ω2, x3 at ω3, x4 at ω3, and x5 at
ω2.

12.4.3 Decoding Problem: Viterbi Algorithm

Given an HMM Λ, for any observation sequence o, there exist many dif-
ferent state sequences s, which may generate o with a probability pΛ(o, s).
Sometimes, we are interested in the most probable state sequence s∗, which
yields the largest probability of generating o along a single state sequence
among all in S. That is,

s∗ = arg max
s∈S

pΛ(o, s).

The decoding problem in HMMs is related to how to efficiently uncover
this most probable state sequence s∗. Similarly, we cannot use any brute-
force method to search for it. The most efficient way is a similar dynamic
programming method that replaces sum with max in the previous forward
algorithm. As shown in Figure 12.12, when we proceed from t − 1 to t,
we keep track of the maximum incoming value as γt ( j) for each node,
rather than summing over all incoming paths in the forward algorithm.
Furthermore, the maximum incoming node from the previous column
is indicated by a back-tracking pointer δt ( j). This results in the so-called
Viterbi decoding Algorithm 12.16 [245]. The most probable state sequence
s∗ is sometimes called the Viterbi path. For example, if we use the three-state
HMM in Figure 12.9 to run the Viterbi algorithm against an observation
sequence o =

{
x1x2x3x4x5

}
, as shown in Figure 12.13, we assume all back-

tracking pointers δt (i) are kept. We also assume that γ5(2) is the largest
outcome in the termination step. Following the back-tracking pointer at
γ5(2) all the way back, we may recover the Viterbi path (indicated by the
solid arrows) as s∗ =

{
ω1 ω2 ω3 ω3 ω2

}
.
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Algorithm 12.16 Viterbi Algorithm for HMMs

Input: an HMM Λ =
{
Ω, π, A, B

}
and a sequence o =

{
x1, x2, · · · xT

}
Output: Viterbi path s∗ and pΛ(o, s∗)

initiate γ1( j) = πjbj (x1) for all j = 1, 2 · · · , N
for t = 2, 3, · · · , T do

for j = 1, 2, · · · , N do
γt ( j) =

(
maxN

i=1 γt−1(i)ai j
)
bj (xt )

δt ( j) = arg maxN
i=1 γt−1(i)ai j

end for
end for
termination: pΛ(o, s∗) = maxN

i=1 γT (i)
path backtracking: s∗ =

{
s∗1 s∗2 · · · s

∗
T

}
with s∗T = arg maxN

i=1 γT (i) and
s∗
t−1 = δt (s

∗
t ) for t = T , · · · , 2

In speech recognition, the Viterbi algorithm is often used to uncover the
most probable Viterbi path, which in turn is used to generate the final
recognition result [173]. However, the 2D-lattice-based implementation in
Figure 12.13 is not possible for large HMMs, which require a huge space to
store this lattice. Therefore, a memory-efficient in-place implementation,
called the token-passing algorithm [257], is often used in speech recognition.

Moreover, if the observation sequence o is long, the probabilities pΛ(o, s)
along different state paths usually vary dramatically, often differing in
the order of magnitude. As a result, the probability summation over all
possible state sequences is always dominated by the maximum along the
Viterbi path. This suggests that we can also use pΛ(o, s∗) from the Viterbi
algorithm as a good approximation to the previous evaluation probability
instead of running the forward–backward algorithm:

pΛ(o) ≈ pΛ(o, s∗).

12.4.4 Training Problem: Baum–Welch Algorithm

The last computation problem in HMMs is how to learn an HMM for
any particular task. As usual, we will have to first specify the structure
of an HMM, such as the number of states in Ω and the topology of the
HMM. Then we will be able to estimate all model parameters, including
Λ =

{
π, A, B

}
, using some training samples. Because HMMs are used to

model sequences, a training set for learning an HMM normally consists of
many variable-length sequences:

D =
{
o(1), o(2), · · · , o(R)

}
,
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where each o(r) =
{
x(r)1 , x(r)2 , · · · x(r)Tr

}
(r = 1, 2 · · · R) denotes an observation

sequence of length Tr . Again, we will use the MLE method to learn all
model parameters Λ from D, as follows:

Λ∗MLE = arg max
Λ

R∑
r=1

ln pΛ
(
o(r)

)
= arg max

Λ

R∑
r=1

ln
∑
s(r )

pΛ
(
o(r), s(r)

)
,

where s(r) represents a hidden state sequence corresponding to o(r), de-
noted as s(r) =

{
s(r)1 s(r)2 · · · s

(r)
Tr

}
, which is a sequence of states occupied at

each time. Because HMMs are essentially finite mixture models, we will
explain how to use the EM algorithm to solve the training problem for
HMMs. This leads to the famous Baum–Welch algorithm [17, 15].

In the E-step, assume we are given a set of HMM parameters Λ(n); let
us look at how to construct the auxiliary function Q(Λ|Λ(n)) for HMMs.
Because the hidden state sequences are latent variables in HMMs, we can
derive the conditional probabilities in Eq. (12.3) for HMMs as follows:

Pr
(
s(r)

�� o(r),Λ(n)) =
pΛ(n)

(
o(r), s(r)

)
pΛ(n)

(
o(r)

)
=

pΛ(n)
(
o(r), s(r)

)∑
s(r ) pΛ(n)

(
o(r), s(r)

) . (12.19)

As in Eq. (12.4), we construct the auxiliary function for HMMs as fol-
lows:

Q(Λ|Λ(n)) =
R∑

r=1

Es(r )
[

ln pΛ(o(r), s(r))
�� o(r),Λ(n)]

=

R∑
r=1

∑
s(r )

ln pΛ(o(r), s(r))Pr
(
s(r)

�� o(r),Λ(n)) .
Considering the hidden state sequence s(r) =

{
s(r)1 s(r)2 · · · s

(r)
Tr

}
, if we substi-

tute

pΛ(o(r), s(r)) = π(s(r)1 )b(x
(r)
1 |s

(r)
1 )

Tr−1∏
t=1

a(s(r)t , s(r)
t+1)b(x

(r)
t+1 |s

(r)
t+1)

into the previous auxiliary function, we have

Q(Λ|Λ(n)) =
R∑

r=1

∑
s
(r )
1 · · ·s

(r )
Tr

[
ln π(s(r)1 ) +

Tr−1∑
t=1

ln a(s(r)t , s(r)
t+1) +

Tr∑
t=1

ln b(x(r)t |s
(r)
t )

]
Pr

(
s(r)1 s(r)2 · · · s

(r)
Tr

�� o(r),Λ(n)) .
Because each state s(r)t ∈ Ω =

{
ω1,ω2, · · · ,ωN

}
, we rearrange the previ-

ous summation according to different states ωi in Ω, and we derive the
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Figure 12.14: An illustration of summa-
tion of a subset of state sequences that all
pass ωi at t and ω j at t + 1.

auxiliary function as follows (see margin note):Taking Q(A |A(n)) as example, consider-
ing different combinations of s(r )

t−1 and s
(r )
t ,

we can rearrange

R∑
r=1

∑
s
(r )
1 ···s

(r )
Tr

Tr−1∑
t=1

ln a(s
(r )
t , s(r )

t+1)

Pr
(
s
(r )
1 s

(r )
2 · · · s

(r )
Tr

��o(r ),Λ(n))
=

R∑
r=1

Tr−1∑
t=1

N∑
i=1

N∑
j=1

ln ai j

Pr
(
s
(r )
t = ωi , s

(r )
t+1 = ω j

�� o(r ),Λ(n))
= Q(A |A(n)).

We can similarly derive Q(π |π(n)) and Q(B |B(n)).

Q(Λ|Λ(n)) =
R∑

r=1

N∑
i=1

ln πi Pr(s(r)1 = ωi

�� o(r),Λ(n))︸                                          ︷︷                                          ︸
Q(π |π(n))

+

R∑
r=1

Tr−1∑
t=1

N∑
i=1

N∑
j=1

ln ai j Pr(s(r)t = ωi , s(r)
t+1 = ωj

�� o(r),Λ(n))︸                                                                     ︷︷                                                                     ︸
Q(A |A(n))

+

R∑
r=1

Tr∑
t=1

N∑
i=1

ln bi(x(r)t )Pr(s(r)t = ωi

�� o(r),Λ(n))︸                                                      ︷︷                                                      ︸
Q(B |B(n))

.

From this, we can see that the overall auxiliary function is broken down
into three independent parts, each of which is only related to one group
of HMM parameters. This allows us to derive the estimation formula
for each group separately. Before we look at how to maximize each of
them in the M-step, let us first investigate how to compute the conditional
probabilities in the previous equation.

Index notations:
n: HMM parameters at nth iteration
r : rth training sequence
t: tth observation in a sequence
i: an HMM state ωi

j: an HMM state ω j First of all, we use a compact notation η
(r)
t (i, j) to represent Pr

(
s(r)t =

ωi , s(r)
t+1 = ωj

�� o(r),Λ(n)) , which indicates the conditional probability of
passing state ωi at time t and state ωj at time t + 1 when conditioning on
o(r) and Λ(n). Based on Eq. (12.19), we can express it as

η
(r)
t (i, j) ∆= Pr

(
s(r)t = ωi , s(r)

t+1 = ωj

�� o(r),Λ(n))
=

∑
s
(r )
1 · · ·s

(r )
t−1s

(r )
t+2 · · ·s

(r )
Tr

pΛ(n)
(
o(r), s(r)1 , · · · s(r)

t−1,ωi ,ωj , s(r)
t+2 · · · s

(r)
Tr

)
∑

s
(r )
1 · · ·s

(r )
Tr

pΛ(n)
(
o(r), s(r)1 , s(r)2 · · · s

(r)
Tr

) .

Both the numerator and the denominator can be efficiently computed with
the forward–backward algorithm. We first run the forward–backward
algorithm on the training sequence o(r) using the current HMM Λ(n) to
derive the set of all forward and backward probabilities for o(r), denoted
as

{
α
(r)
t (i), β

(r)
t (i)

}
. The denominator is the evaluation probability we have

studied in the evaluation problem, which can be computed by Eq. (12.16)
or Eq. (12.17). As shown in Figure 12.14, the numerator can be computed
as three parts:

1. α(r)t (i): a sum of all partial state sequences until t;
2. ai jbj (xt+1): a transition from ωi to ωj at time t; and
3. β(r)

t+1( j): a sum of all partial state sequences after t + 1.
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Putting them together, for each o(r), we can compute

η
(r)
t (i, j) =

α
(r)
t (i)ai jbj (xt+1)β

(r)
t+1( j)∑N

i=1 α
(r)
Tr
(i)

(12.20)

for all 1 ≤ t ≤ Tr and 1 ≤ i, j ≤ N .

Second, we can use η(r)t (i, j) to compute another conditional probability, as
follows:

Pr(s(r)t = ωi

�� o(r),Λ(n)) = N∑
j=1

η
(r)
t (i, j)

Using the compact notations for all conditional probabilities, we rewrite
the auxiliary functions for three groups of HMM parameters as follows:

Q
(
π |π(n)

)
=

R∑
r=1

N∑
i=1

N∑
j=1

ln πi · η
(r)
1 (i, j)

Q
(
A|A(n)

)
=

R∑
r=1

Tr−1∑
t=1

N∑
i=1

N∑
j=1

ln ai j · η
(r)
t (i, j)

Q
(
B|B(n)

)
=

R∑
r=1

Tr∑
t=1

N∑
i=1

N∑
j=1

ln bi(x(r)t ) · η
(r)
t (i, j).

Index notations:
n: HMM parameters at nth iteration
r : rth training sequence
t: tth observation in a sequence
i: an HMM state ωi

j: an HMM state ω j

In the M-step, we maximize these auxiliary functions to derive the estima-
tion formulae for all three groups of HMM parameters.

For π, taking the constraint
∑N

i=1 πi = 1 into account, we have

∂

∂π

(
Q

(
π |π(n)

)
+ λ

( N∑
i=1

πi − 1
) )
= 0 =⇒

π
(n+1)
i =

∑R
r=1

∑N
j=1 η

(r)
1 (i, j)∑R

r=1
∑N

i=1
∑N

j=1 η
(r)
1 (i, j)

. (12.21)

For A, taking into account the constraints
∑

j ai j = 1 for all i, we similarly
derive the formula for all i, j = 1, 2, · · · , N as

a(n+1)
i j =

∑R
r=1

∑Tr−1
t=1 η

(r)
t (i, j)∑R

r=1
∑Tr−1

t=1
∑N

j=1 η
(r)
t (i, j)

. (12.22)

For B, we will have to consider different HMM types.
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1. Estimating B for Discrete HMMs

In discrete HMMs, all observations are discrete symbols. We assume
that all discrete observation symbols come from a finite set, denoted as{
v1, v2, · · · , vK

}
. In this case, we may choose a multinomial distribution

for each state-dependent distribution bi(x) in an HMM state. As a result,
B consists of all multinomial models in all HMM states i = 1, 2, · · · , N :

B =
{
bik

�� 1 ≤ i ≤ N , 1 ≤ k ≤ K
}
,

where bik indicates the probability of generating the kth symbol vk from
state ωi .

Substituting all probabilities {bik } into the previous Q
(
B|B(n)

)
, we can

derive the auxiliary function for discrete HMMs as follows:

Q
(
B|B(n)

)
=

R∑
r=1

Tr∑
t=1

N∑
i=1

N∑
j=1

K∑
k=1

ln bik · δ(x(r)t − vk ) · η
(r)
t (i, j).

δ(x(r )t − vk ) =


1 if x(r )t = vk

0 otherwise.

After taking into account the constraints
∑K

k=1 bik = 1 for all i, we derive
the estimation formula for all i and k asIndex notations:

n: HMM parameters at nth iteration
r : rth training sequence
t: tth observation in a sequence
i: an HMM state ωi

j: an HMM state ω j

k: kth observation symbol vk

b(n+1)
ik

=

∑R
r=1

∑Tr
t=1

∑N
j=1 η

(r)
t (i, j) · δ(x(r)t − vk )∑R

r=1
∑Tr

t=1
∑N

j=1 η
(r)
t (i, j)

. (12.23)

2. Estimating B for Continuous Density HMMs

In continuous density HMMs, all observations x(r)t are continuous feature
vectors. In this case, we have to choose a probability density function bi(x)
for each HMM state ωi . Because of the universal density approximation
capability of GMMs, we normally use a GMM to represent the probability
density function in each state [120]. That is,

bi(x) =
M∑
m=1

wim ·N(x | µim,Σim),

where µim and Σim denote the mean vector and covariance matrix of the
mth Gaussian component in state ωi , and wim is its mixture weight. We
have

∑M
m=1 wim = 1 for all i.

In this case, B is composed of all of these GMM parameters:

B =
{
µim,Σim,wim

�� 1 ≤ i ≤ N , 1 ≤ m ≤ M
}
.
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Figure 12.15: An illustration of expand-
ing each state in a Gaussian mixture
HMM into several compound states of
{ωi ,m}.

Here we use s
(r )
t and l

(r )
t to indicate the

state and Gaussian component, from which
x(r )t may be generated.

For Gaussian mixture HMMs, we can expand each HMM state into the
product space of Ω and {1, · · · , M}, as in Figure 12.15. Each compound
state {ωi , m} contains only one Gaussian N(x | µim,Σim). If we treat the
compound state sequences {s(r)t , l(r)t }, where s(r)t ∈ Ω and l(r)t ∈ {1, · · · , M},
as latent variables, we can construct the auxiliary function for B in Gaus-
sian mixture HMMs as follows:

Q(B|B(n)) =
R∑

r=1

Tr∑
t=1

N∑
i=1

M∑
m=1

[
lnwim + lnN(x | µim,Σim)

]
Pr

(
s(r)t = ωi , l(r)t = m

�� o(r),Λ(n)) .
The conditional probability may be computed as

Pr
(
s(r)t = ωi , l(r)t = m

�� o(r),Λ(n))
= Pr

(
s(r)t = ωi

�� o(r),Λ(n))︸                         ︷︷                         ︸
=

∑N
j=1 η

(r )
t (i,j)

Pr
(
l(r)t = m

�� s(r)t = ωi , o(r),Λ(n)
)︸                                      ︷︷                                      ︸

∆
= ξ

(r )
t (i,m)

,

where ξ(r)t (i, m) is called the occupancy probability of each Gaussian compo-
nent, which is computed similar to Eq. (12.7), as follows:

ξ
(r)
t (i, m) = Pr(l(r)t = m | s(r)t = ωi , x(r)t ,Λ(n))

=
w
(n)
imN(x(r)t | µ

(n)
im ,Σ(n)im)∑M

m=1 w
(n)
m N(x(r)t | µ

(n)
im ,Σ(n)im)

. (12.24)

After we substitute these occupancy probabilities into the previous auxil-
iary function and maximize it with respect to mixture weights, Gaussian
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mean vectors, and covariance matrices, we finally derive the estimation
formula for the Gaussian mixture HMMs, as follows:

w
(n+1)
im =

∑R
r=1

∑Tr
t=1

∑N
j=1 η

(r)
t (i, j)ξ(r)t (i, m)∑R

r=1
∑Tr

t=1
∑N

j=1
∑M

m=1 η
(r)
t (i, j)ξ(r)t (i, m)

(12.25)

µ(n+1)
im =

∑R
r=1

∑Tr
t=1

∑N
j=1 η

(r)
t (i, j)ξ(r)t (i, m) · x(r)t∑R

r=1
∑Tr

t=1
∑N

j=1 η
(r)
t (i, j)ξ(r)t (i, m)

(12.26)

Σ
(n+1)
im =

∑R
r=1

∑Tr
t=1

∑N
j=1 η

(r)
t (i, j)ξ(r)t (i, m)

(
x(r)t − µ

(n+1)
im

) (
x(r)t − µ

(n+1)
im

)ᵀ
∑R

r=1
∑Tr

t=1
∑N

j=1 η
(r)
t (i, j)ξ(r)t (i, m)

.

(12.27)

Index notations:
n: HMM parameters at nth iteration
r : rth training sequence
t: tth observation in a sequence
i: an HMM state ωi

j: an HMM state ω j

m: mth Gaussian component

As we have seen, all estimation formulae for HMM parameters are repre-
sented as a ratio between two statistics in the numerator and denominator
(see margin note). In each iteration, we just need to use the current HMM
parameterΛ(n) to accumulate these statistics over the entire training set. At
the end of each iteration, a new set of HMM parameters Λ(n+1) is derived
as the ratios between these statistics. The EM algorithm guarantees that
the new parameters will improve the likelihood function over the old ones.
This training process is repeated over and over until it converges. Finally,
we summarize the Baum–Welch algorithm in Algorithm 12.17.

Taking Eq. (12.26) as an example:

µ(n+1)
im =

∑R
r=1

∑Tr

t=1
∑N

j=1

numerator statistics︷                         ︸︸                         ︷
η
(r )
t (i, j)ξ

(r )
t (i,m) · x

(r )
t∑R

r=1
∑Tr

t=1
∑N

j=1 η
(r )
t (i, j)ξ

(r )
t (i,m)︸                  ︷︷                  ︸

denominator statistics

.

As for how to initialize Λ(0) for HMMs, in-
terested readers may refer to the uniform
segmentation in Young et al. [258] and the
segmental k-means method in Juang and
Rabiner [121].

Algorithm 12.17 Baum–Welch Algorithm for HMMs

Input: a training set of observation sequences
{
o(r)

�� r = 1, 2, · · · , R
}

Output: HMM parameters Λ =
{
π, A, B

}
set n = 0
initialize Λ(0) =

{
π(0), A(0), B(0)

}
while not converged do

zero numerator/denominator accumulators for all parameters
for r = 1, 2, · · · , R do

1. run forward–backward algorithm on o(r) using Λ(n):{
o(r),Λ(n)

}
−→

{
α
(r)
t (i), β

(r)
t (i)

}
2. use Eqs. (12.20) and (12.24):{
α
(r)
t (i), β

(r)
t (i)

}
−→

{
η
(r)
t (i, j), ξ(r)t (i, m)

}
3. accumulate all numerator/denominator statistics

end for
update all parameters as the ratios of statistics −→ Λ(n+1)

n = n + 1
end while
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Lab Project VI

In this project, you will solve a simple binary classification problem (class A vs. class B) using multivariate
Gaussian models. Assume two classes have equal prior probabilities. Each observation feature is a three-
dimensional (3D) vector. You can download the data set from

http://www.eecs.yorku.ca/~hj/MLF-gaussian-dataset.zip.

You will use several different methods to build such a classifier based on the provided training set, and then the
estimated models will be evaluated on the provided test set. You can use any programming language of your
preference, but you will have to implement all training and test methods from scratch.

a. First of all, build a simple classifier using multivariate Gaussian models. Each class is modeled by a single
3D Gaussian distribution. You should consider the following structures for the covariance matrices:

I Each Gaussian uses a separate diagonal covariance matrix.
I Each Gaussian uses a separate full covariance matrix.
I Two Gaussians share a common diagonal covariance matrix.
I Two Gaussians share a common full covariance matrix.

Use the provided training data to estimate the Gaussian mean vector and covariance matrix for each class
based on MLE. Report the classification accuracy of the MLE-trained models as measured by the test set
for each choice of the covariance matrix.

b. Improve the Gaussian classifier from the previous step by using a GMM to model each class. You need to
use the k-means clustering method to initialize all parameters in the GMMs, and then improve the GMMs
based on the EM algorithm. Investigate GMMs that have 2, 4, 8, or 16 Gaussian components, respectively.

c. Assume each class is modeled by a factorial GMM, where all feature dimensions are assumed to be
independent, and each dimension is separately modeled by a 1-dimensional Gaussian mixture. Use the
k-means clustering method and the EM algorithm to estimate these two factorial GMMs. Investigate the
performance of two factorial GMMs on the test data for the cases where each dimension has 2, 4, or 8
Gaussian components, respectively.

d. Determine the best model configuration in terms of the number of Gaussian components and the covari-
ance matrix structure for this data set.

The csv data format: All training samples are given in the file train-gaussian.csv, and all test samples are given
in the file test-gaussian.csv. Each line represents a feature vector in the format as follows:

y, x1, x2, x3,

where y ∈ {A, B} is class label, and [x1 x2 x3] is a 3D feature vector.

http://www.eecs.yorku.ca/~hj/MLF-gaussian-dataset.zip
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Exercises

Q12.1 Determine whether the following distributions belong to the exponential family:

a. Dirichlet distribution
b. Poisson distribution
c. Inverse-Wishart distribution
d. von Mises–Fisher distribution

Derive the natural parameters, sufficient statistics, and normalization term for those distributions that
belong to the exponential family.

Q12.2 Determine whether the following generalized linear models belong to the exponential family:

a. Logistic regression
b. Probit regression
c. Poisson regression
d. Log-linear models

Q12.3 Prove that the exponential family is close under multiplication.

Q12.4 Prove that the auxiliary function Q(θ |θ(n)) is concave—namely, −Q(θ |θ(n)) is convex—if we choose all
component models in a finite mixture model as one of the following e-family distributions:

a. Multivariate Gaussian distribution
b. Multinomial distribution
c. Dirichlet distribution
d. von Mises–Fisher distribution

Q12.5 The index m in finite mixture models, as in Eq. (12.1), can be extended to be a continuous variable y ∈ R:

p(x) =
∫

w(y) p(x | θ, y) dy.

This is called an infinite mixture model if
∫
w(y) dy = 1 and

∫
p(x | θ, y) dx = 1 (∀θ, y) hold. Extend the EM

algorithm to the infinite mixture models:

a. Define the auxiliary function for an infinite mixture model.
b. Design the E-step and M-step for an infinite mixture model.

Q12.6 Consider an m-dimensional variable r, whose elements are nonnegative integers. Suppose its distribution
is described by a mixture of multinomial distributions:

p(r) =
K∑
k=1

πk Mult(r | pk ) ∝
K∑
k=1

πk

m∏
i=1

pri
ki

where the parameter pki denotes the probability of ith dimension in the kth component, subject to
0 ≤ pki ≤ 1 (∀k, i) and

∑
i pki = 1 (∀k). Assume a set of training samples is given as

{
r(n)

�� n = 1, · · · , N
}
.

Derive the E-step and M-step of the EM algorithm to optimize the mixing weights {πk } (
∑

k πk = 1) and
all component parameters {pki} based on the MLE.



12.4 Hidden Markov Models 289

Q12.7 Assume a GMM is given as follows:

p(x) =
M∑
m=1

wm N
(
x | µm,Σm

)
.

If we partition the vector x into two parts as x =
[
xa ; xb

]
, then do the following:

a. Show that the marginal distribution p(xa) is also a GMM, and find expressions for the mixture
weights and all Gaussian means and covariance matrices.

b. Show that the conditional distribution p(xa | xb) is also a GMM, and find expressions for the mixture
weights and all Gaussian means and covariance matrices.

c. Find the expression for the conditional mean E
[
xa | xb

]
.

Q12.8 Prove that αt (i) and βt (i) in an HMM satisfy Eq. (12.18) for any t.

Q12.9 Run the Viterbi algorithm on a left-to-right HMM, where the transitions only go from one state to itself or
to a higher-indexed state. Use a diagram as in Figure 12.13 to show how the HMM topology affects the
Viterbi algorithm.

Q12.10 Derive the update formula in Eq. (12.23) for B in discrete HMMs.

Q12.11 Derive the update formulae in Eqs. (12.25), (12.26), and (12.27) for B in Gaussian mixture HMMs.

Q12.12 Derive an efficient method to compute the gradient of the log-likelihood function for the following mixture
models:

a. Gaussian mixture models: ∂
∂θ ln pθ(x), where pθ(x) is given in Eq. (12.6).

b. Hidden Markov models: ∂
∂Λ ln pΛ(o), where pΛ(o) is given in Eq. (12.15).

Q12.13 When the HMM algorithms are run on long sequences, underflow errors often occur because we need
to multiply many small positive numbers. To address this issue, we often represent all forward and
backward probabilities in the logarithm domain. In this case, we can do arithmetic operations as follows:

log(ab) = log(a) + log(b) log(a/b) = log(a) − log(b)

log(a ± b) = log(a) + log
[
1 ± exp

(
log(b) − log(a)

) ]
.

Use these routines to rewrite the forward–backward Algorithm 12.15 in the logarithm domain. In other
words, use α̃t (i) = log

(
αt (i)

)
and β̃t (i) = log

(
βt (i)

)
in place of αt (i) and βt (i).





Entangled Models 13
13.1 Formulation of Entangled Mod-

els . . . . . . . . . . . . . . . . . . . 291
13.2 Linear Gaussian Models . . . 296
13.3 Non-Gaussian Models . . . . 300
13.4 Deep Generative Models . . 303

Exercises . . . . . . . . . . . . . 309

In addition to finite mixture models, there exists another methodology in
machine learning that can expand simple generative models into more so-
phisticated ones. This method results in a large chunk of popular machine
learning methods, which are all referred to as entangled models throughout
this book. As we will see, this category includes the traditional factor anal-
ysis, probabilistic PCA, and independent component analysis (ICA), as well as
the more recent deep generative models, such as variational autoencoders
(VAEs) and generative adversarial nets (GANs). This chapter first introduces
the key idea behind all entangled models and then briefly discusses some
representative models in this category.

13.1 Formulation of Entangled Models

In finite mixture models, we superpose many different simple generative
models to form a mixture distribution to approach any arbitrarily complex
distribution. In contrast, entangled models take a rather different approach
to construct more advanced generative models. The key idea behind all
entangled models is that we can rely on a transformation of random
variables to convert a simple probability distribution into any arbitrary
distribution. The theoretical justification is formally stated in the following
theorem:

Theorem 13.1.1 Given a normally distributed random variable z ∼ N(0, 1),
for any smooth probability distribution p(x) (x ∈ Rd), there exist some Lp func-
tions: f1(z), f2(z), · · · , fd(z) to convert z into a vector f (z) =

[
f1(z) · · · fd(z)

]ᵀ
so that f (z) follows this distribution (i.e., f (z) ∼ p(x)).

A general form of this theorem is called
the Borel isomorphism theorem in measure
theory [126].

Moreover, this theorem can be easily extended to any other continuous
distributions rather than a univariate normal distribution. This theorem
suggests that we can apply some transformations to a simple genera-
tive model to construct complicated generative models for any arbitrary
data distributions. As shown in Figure 13.1, we can always start with a
fairly simple generative model p(z) in a low-dimensional space Rn and
meanwhile find a deterministic vector-valued function from Rn to a higher-
dimensional space Rd (d > n) (i.e., x = f (z)) to derive an arbitrarily
complex generative model p(x) in Rd . The resultant models p(x) are all
called entangled models.
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Figure 13.1: Entangled models are con-
structed by applying a transformation to
a simple generative model to convert it
into a more sophisticated one.

This idea of entangled models is well aligned with a popular viewpoint
regarding the data-generation process in the physical world. As we know,
most real-world data we observe in practice are often complicated in
nature, and they often follow a very complex distribution in a high-
dimensional space. However, in most cases, what we are really concerned
with in these high-dimensional data can usually be abstracted into some
high-level key messages, whereas most fine details in the raw data are ir-
relevant. These key messages in fact can be determined by a small number
of independent factors. For instance, if we take a photo of someone’s face
as an example, the raw data compose a fairly complex high-dimensional
image. However, the key information we perceive from this image can
actually be specified by only a small number of main factors, such as the
person’s identity, face orientation, illumination, wearing glasses or not,
and so on. Accordingly, we may assume that this image is generated from
a simple two-stage stochastic process:

1. All of these key factors, denoted as z, are randomly sampled from a
simple distribution. It makes sense to assume this distribution to be
simple because all of these key factors are statistically independent.

2. These sampled factors are entangled by a fixed mixing function x =
f (z) to generate the final observed image, whereas the underlying
sampled factors z are unknown to us.

As suggested by Theorem 13.1.1, we can assume this mixing function is
deterministic because a deterministic function is already sufficient to de-
rive any complex distribution to model any data. Because all independent
factors are entangled by a presumably complicated mixing function, the
underlying key factors z usually become imperceptible from the observed
data x.

13.1.1 Framework of Entangled Models

In machine learning, we usually adopt a general framework for entan-
gled models, as shown in Figure 13.2. Within this framework, z is often
called factors (a.k.a. continuous latent variables in the literature), which fol-
lows a simple distribution pλ(z) with parameters λ. And the deterministic
mapping x = f (z; W) is called the mixing function with some parameters
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W. Furthermore, we assume that the output of the mixing function is
corrupted by an independent additive noise ε, called the residual. The
residual is introduced here to accommodate some observation or measure-
ment errors in the process, and we assume the residual ε follows another
simple distribution (usually a Gaussian distribution), that is, pν(ε) with
parameters ν.

Figure 13.2: An illustration of a generally
accepted framework for entangled mod-
els in machine learning, involving three
components:
1. The factor distribution pλ (z)
2. The residual distribution pν (ε)
3. The mixing function f (z)

After the deterministic mapping x = f (z) + ε, we can derive an entangled
model as pΛ(x), where Λ =

{
W,λ, ν

}
denote all model parameters of the

underlying entangled model. The entangled models actually depend on
the choices of the factor distribution pλ(z), the residual distribution pν(ε),
and the mixing function f (z; W). When we choose these components in
a different way, we end up with different entangled models. Table 13.1
lists some representative entangled models well known in the literature,
along with their corresponding choices of these three components. Gen-
erally speaking, we can organize all entangled models into three main
categories. In the first category, we choose Gaussian models for both pλ(z)
and pν(ε) and a linear function for f (z). This leads to the so-called linear
Gaussian models, including factor analysis [231] and probabilistic principal
component analysis (PCA) [238] as two special cases. In the second cate-
gory, we still use a linear function for f (z) but choose some non-Gaussian
models for pλ(z), such as some heavy-tail distributions or mixture models.
This leads to some important machine learning methods, such as ICA [18,
107], independent factor analysis (IFA) [4], and hybrid orthogonal projection
and estimation (HOPE) [261]. In the third category, we choose the mixing
function f (z) as an Lp function as specified in Theorem 13.1.1. Due to
the well-known universal approximator theorem, neural networks can
serve as a good candidate for more general nonlinear mixing functions
in this category. Hence, the entangled models in this category are often
called deep generative models; these models includes two recently popular
methods: VAEs [130] and GANs [84]. The following sections introduce
some representative entangled models from these three categories. The
rest of this section first briefly discusses some general issues related to
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Table 13.1: A summary of some represen-
tative entangled models, along with their
corresponding choices for the three com-
ponents, including probabilistic PCA [238],
factor analysis [231], ICA [18, 107], IFA
[4], HOPE [261], VAEs [130], and GANs
[84]. GMM = Gaussian mixture model.
movMF = mixtures of von Mises–Fisher
(vMF) distributions.

Entangled Factor Residual Mixing

models z ∼ p(z) ε ∼ p(ε) f (z)

Probabilistic N(z|0, I) N(ε |0,σ2I) Wz

PCA linear

Factor N(z|0, I) N(ε |0, D) Wz

analysis D: diagonal linear

ICA
∏

i pi(zi) — Wz

non-Gaussian linear

IFA
∏

i pi(zi) N(ε |0,Λ) Wz

factorial GMM linear

HOPE Mixture model N(ε |0,σ2I) Wz

(movMF/GMM) W: orthogonal

VAE N(z|0, I) N(ε |0,σ2I) f (·) ∈ Lp

neural nets

GAN N(z|0, I) — f (·) ∈ Lp

neural nets

all entangled models to give a high-level overview about all topics to be
discussed in the remainder of this chapter.

13.1.2 Learning of Entangled Models in General

Generally speaking, we have two different methods to explicitly derive
the underlying entangled model in Figure 13.2 from the three components:
pλ(z), pν(ε), and f (z; W). First of all, if the mixing function f (z; W) is
invertible and differentiable, we can derive the entangled model using the
Jacobian matrix of the mixing function as follows:

The joint distribution of z and ε is

p(z,ε) = p(z)p(ε),

where p(x) is derived by treating x as a
transformation of z and ε:

x = f (z) + ε.

Refer to Eq. (2.3) for how to derive p(x)
from p(z,ε).

pΛ(x) =
�� J

�� pλ
(
f −1
1 (x)

)
pν

(
f −1
2 (x)

)
, (13.1)

where f −1
1 (x) denotes the inverse of the mixing function transforming from

x back to z, f −1
2 (x) denotes the inverse function from x to ε, and J denotes

the Jacobian matrix of these inverse transformations. This Jacobian-based
method is particularly useful when the mixing function is linear.

Second, if the mixing function is not invertible or the Jacobian matrix is not
computable, we can use a marginalization method to derive the entangled
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model as follows:

pΛ(x) =
∫

z
pλ(z)pν

(
x − f (z; W)

)
dz (13.2)

Unfortunately, this formulation requires us to integrate over the factor z,
which may be computationally difficult in many cases.

Following the marginalization over a joint
distribution of x and z:

p(x) =

∫
z
p(x, z) dz

=

∫
z
p(z)p(x | z) dz.

Because we have ε = x − f (z; W), then

p(x | z) = pν
(
x − f (z; W)

)
.

Once we know all the three components in Figure 13.2, we can deter-
mine the underlying entangled models using one of the two previously
described methods. Like any other generative model, entangled models
can also be used to model complex data distributions for the purposes of
classification or regression. Moreover, in some circumstances, we may be
interested in inferring the unobserved factor z based on an observation x.
This procedure is often called disentangling because it aims to uncover the
unknown independent key factor z, which may be used as an intuitive
representation to interpret the raw data x. This is usually called disentan-
gled representation learning in machine learning. Assuming we have known
all parameters of an entangled model, this disentangling process can be
done through either the inverse function z = f −1

1 (x) when the mixing
function is invertible or through the conditional distribution derived from
the entangled model as follows:

p(z|x) =
p(z, x)
p(x)

=
pλ(z)pν

(
x − f (z; W)

)∫
z pλ(z)pν

(
x − f (z; W)

)
dz

. (13.3)

Another interesting application of entangled models is to generate new
data samples, such as image generation in Goodfellow et al. [84] and
Gregor et al. [85]. In this case, we first randomly sample the distributions
of the factor and the residual, and then we apply the mixing function to
map these samples to generate a new observation x. This data-generation
strategy has recently drawn a great deal of attention in many computer
vision applications [123, 2].

The final issue in entangled models is how to estimate all model pa-
rameters Λ =

{
W,λ, ν

}
from a training set of observed samples (i.e.,

DN =
{
x1, x2, · · · , xn

}
). As with other generative models, we can use

the maximum-likelihood estimation (MLE) method, as follows:

ΛMLE = arg max
Λ

N∑
i=1

ln pΛ(xi).

We can substitute either Eq. (13.1) or Eq. (13.2) into the entangled model
pΛ(x) and apply some suitable optimization methods to solve this maxi-
mization problem. However, for deep generative models, it is unfortunate
that we cannot explicitly express pΛ(x) because neither the Jacobian matrix
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in Eq. (13.1) nor the integral in Eq. (13.2) is computable for neural net-
works. Some alternative approaches must be used to learn deep generative
models. We will briefly consider them in Section 13.4.

13.2 Linear Gaussian Models

As mentioned, linear Gaussian models represent a subset of the entangled
models in Figure 13.2 when we choose Gaussian models for the factor and
residual distributions and use a linear mapping for the mixing function.
Without losing generality, let us assume that the factor z follows a zero-
mean multivariate Gaussian distribution as

p(z) =N(z
�� 0,Σ1),

where Σ1 ∈ Rn×n denotes its covariance matrix, and the residual ε follows
another multivariate Gaussian distribution as

p(ε) =N(ε
�� µ,Σ2),

where µ ∈ Rd and Σ2 ∈ Rd×d stand for the mean vector and the covariance
matrix, respectively. The mixing function is assumed to be linear, taking
the following form:

f (z; W) =Wz,

where W ∈ Rd×n denotes the parameters of the linear mixing function.
Based on the property of Gaussian random variables, we can explicitly
derive the linear Gaussian models as another Gaussian model:

pΛ(x) =N(x
�� µ, WΣ1Wᵀ + Σ2), (13.4)

where Λ =
{
W,Σ1, µ,Σ2

}
denotes all parameters of the linear Gaussian

models.

Refer to Exercise Q13.2 for how to derive
Eq. (13.4) for linear Gaussian models.

Furthermore, we can also derive that the conditional distribution
in Eq. (13.3) is also another multivariate Gaussian for all linear Gaussian
models. As a result, linear Gaussian models represent a group of entangled
models that are highly tractable. In the following, we will use probabilistic
PCA [238] and factor analysis [231] as two examples to explain how to
handle linear Gaussian models.

13.2.1 Probabilistic PCA

In probabilistic PCA methods, we assume the factor distribution is a zero-
mean unit-covariance Gaussian as

p(z) =N(z
�� 0, I),
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where we have no parameters in the factor distribution. Meanwhile, we
assume that the residual distribution is an isotropic covariance Gaussian
as

pσ(ε) =N(ε
�� µ,σ2I),

where σ2 is the only parameter representing the variance in each dimen-
sion. According to Eq. (13.4), we can derive the following formula for a
probabilistic PCA model:

pΛ(x) =N
(
x
�� µ, WWᵀ + σ2I

)
,

where Λ =
{
W, µ,σ2} denotes all parameters of a probabilistic PCA

model.

Next, we will consider how to estimate the model parameters Λ based on
the MLE method. Given a set of training data, denoted as DN =

{
xi | i =

1, 2, · · · , N
}
, we can express the log-likelihood function as follows:

Here, C = − dN
2 ln(2π) is a constant.

l(W, µ,σ2) =

C −
N
2

ln
��WWᵀ + σ2I

�� − 1
2

N∑
i=1

(xi − µ)ᵀ
(
WWᵀ + σ2I

)−1
(xi − µ).

If we compute the partial derivative of this log-likelihood function with
respect to (w.r.t.) µ and vanish it to 0, we can derive the formula to estimate
µ as

µMLE = x̄ =
1
N

N∑
i=1

xi . (13.5)

Substituting µMLE into the previous equation, we may derive the log-
likelihood function for the remaining parameters as follows:

l(W,σ2) = C −
N
2

[
ln

��� WWᵀ + σ2I
��� + tr

( (
WWᵀ + σ2I

)−1S
)]

, (13.6)

where S is the d × d sample covariance matrix computed in the same way
as in the PCA in Section 4.2.1, and tr denotes the trace of a matrix.

S =
1
N

N∑
i=1

(xi − x̄)(xi − x̄)ᵀ.

As shown in Tipping and Bishop [237], there exists a closed-form solution
to derive the global maximum of the log-likelihood function, as follows:

WMLE = Un(Λn − σ
2
MLE)

1/2R,

where Λn is an n × n diagonal matrix consisting of the top n largest eigen-
values of S, each column of the d × n matrix Un is the corresponding
eigenvector of S, and R is an arbitrary n × n orthogonal rotation matrix.
Furthermore, σ2

MLE can also be computed by averaging the remaining d − n
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smallest eigenvalues, as follows:

For any n × n rotation matrix R, we have

RRᵀ = I.

Therefore, any R will lead to the same
likelihood value in Eq. (13.6) because R is
canceled out in WWᵀ.

σ2
MLE =

1
d − n

d∑
j=n+1

λj

These formulae show that the estimation for WMLE is not unique under this
setting because we can choose any rotation matrix R. When we choose
R = I, the column vectors WMLE correspond to the top n principal compo-
nents in the standard PCA procedure as described in Section 4.2.1, scaled
by the variance parameter λj − σ2

MLE. Therefore, the resultant models are
often called probabilistic PCA. The probabilistic PCA can be viewed as a
generative model that stochastically extends the traditional PCA method.
The introduction of the likelihood function allows a formal treatment of
PCA, as with other generative models. For example, more advanced mod-
els, such as the mixtures of probabilistic PCA in Tipping and Bishop [237],
can be formulated in a principled way like the regular mixture models in
Chapter 12.

Finally, in probabilistic PCA models, we can explicitly express the con-
ditional distribution in Eq. (13.3) for the purpose of disentangling as the
following Gaussian distribution:

p(z | x) =N
(
z
�� M−1Wᵀ(x − µ),σ−2M

)
, (13.7)

where M is an n × n matrix computed as M = WᵀW + σ2I. Note that the
mean vector of this conditional distribution depends on x, but the covari-
ance matrix is totally independent of x. How to derive this conditional
distribution is left as Exercise Q13.3.

13.2.2 Factor Analysis

Factor analysis [231] is a traditional data-analysis method in statistics
and is normally used to describe variability among observed variables
in terms of a lower number of unobserved latent variables called factors.
Factor analysis can also be formulated as a linear Gaussian model, which
is closely related to the aforementioned probabilistic PCA method. The
only difference between factor analysis and probabilistic PCA is that we
replace the isotropic covariance Gaussian in the residual distribution with
a diagonal covariance Gaussian distribution, as follows:

p(ε) =N(ε
�� µ, D),
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where D ∈ Rd×d denotes an unknown diagonal covariance matrix. Simi-
larly, we can derive the data distribution in factor analysis models as

pΛ(x) =N
(
x
�� µ, WWᵀ +D

)
,

where Λ =
{
W, µ, D

}
denotes all parameters in factor analysis.

We can also use the MLE method to learn all unknown parameters from
some training samples. Given the training set DN =

{
xi | i = 1, 2, · · · , N

}
,

we express the log-likelihood function in factor analysis as follows:

l
(
W, µ, D) =

C −
N
2

ln
��� WWᵀ +D

��� − 1
2

N∑
i=1

(xi − µ)ᵀ
(
WWᵀ +D

)−1
(xi − µ).

First of all, we can similarly derive the maximum-likelihood estimate for
µ that is the same as Eq. (13.5). After substituting µMLE in Eq. (13.5), we
represent the log-likelihood function of W and D as follows:

µMLE = x̄ =
1
N

N∑
i=1

xi .

l(W, D) = C −
N
2

[
ln

��� WWᵀ +D
��� + tr

( (
WWᵀ +D

)−1S
)]

.

Algorithm 13.18 Alternating MLE for Factor Analysis
Input: the sample covariance matrix S
Output: W and D

randomly initialize D0; set t = 1
while not converged do

1. construct Pt using the n leading eigenvectors of D−
1
2

t−1SD−
1
2

t−1

2. Wt = D
1
2
t−1Pt

3. Dt = diag
(
S −WtW

ᵀ
t

)
4. t = t + 1

end while

However, because of the change made to the covariance matrix of the
residual distribution, there is no closed-form solution to maximize the
log-likelihood function. We have to rely on some iterative optimization
methods to estimate W and D for factor analysis. Here, we consider an
alternating method, as shown in Algorithm 13.18, to estimate W and D one
by one in an alternative fashion. We first randomly initialize the diagonal
covariance matrix D. Then, we maximize l(W, D)with respect to W only.
According to Bartholomew [14], when D is fixed, the optimal D−

1
2 W is

given by the d × n matrix whose columns are the n leading eigenvectors of
the matrix D−

1
2 SD−

1
2 . After we derive a new W from the optimal D−

1
2 W,

we maximize l(W, D) with respect to D alone. It can be shown that the
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Figure 13.3: An illustration of a blind
source-separation task, where four micro-
phones are used to capture mixed signals
from three independent speakers.

optimal choice of D is given by the diagonal elements of S −WWᵀ when
W is fixed. As shown in Algorithm 13.18, we can alternatively optimize
over W and D until it converges.

Similar to probabilistic PCA, the MLE found by this numerical method
is not unique because the likelihood function of factor analysis is also
invariant to any rotation in the space of z. Finally, we can also use an
extended expectation-maximization (EM) algorithm to solve the MLE
estimation for W and D in factor analysis. See Exercise Q13.5 for more
details on this approach.

13.3 Non-Gaussian Models

In the second category of entangled models, we still use a linear mixing
function and a Gaussian model for the residual distribution, but we con-
sider some non-Gaussian models for the factor distribution. This leads to
many interesting machine learning methods, and some of them have been
successfully applied to several important real-world tasks. In this section,
we will briefly consider some representative methods in this category.

13.3.1 Independent Component Analysis (ICA)

Many real-world applications require the solution of a blind source-
separation problem. For example, assume that several people are simulta-
neously speaking aloud in a room. If we place several microphones in the
same room and each microphone can only capture a mixed signal from all
speakers, the blind source-separation problem aims to recover the voices
of all speakers based on the recordings of all microphones, as shown in
Figure 13.3. This problem can be formulated as an entangled model like
that shown in Figure 13.2. In this case, we use each element in the factor
z to represent the original voice from one speaker. And it is reasonable
to assume that all factor elements are statistically independent, and these
independent elements are mixed through a linear function to generate all
mixed signals, which are captured by the microphones as the observation
x. The key problem in ICA is to learn an entangled model to disentangle
any observation x to derive all independent components in z. For simplic-
ity, we usually assume that the dimension of the observations is equal to
that of the hidden factor elements in ICA (i.e., n = d). Furthermore, we
also ignore the residual in the following ICA discussion.

For the factor distribution p(z), we can assume that it is factorized into each
component because all factor components are assumed to be independent
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Figure 13.4: Comparison between the nor-
mal distribution with the heavy-tail dis-
tribution commonly used for ICA.

in the first place. Therefore, we have

p(z) =
n∏
j=1

p(zj ), (13.8)

where p(zj ) indicates the probability distribution of one element in z.
According to Hyvärinen and Oja [107], it is crucial to use some non-
Gaussian models for p(zj ). As we know from the previous section, the
likelihood function of a linear Gaussian model is invariant to any arbitrary
rotation of z. In other words, if these independent components follow
any Gaussian distribution, we cannot disentangle them using any linear
transformation. In practice, a common choice for each p(zj ) is a heavy-tail
distribution, as follows:

p(zj ) =
2

πcosh(zj )
=

4
π(ez j + e−z j )

.

For comparison, Figure 13.4 plots this heavy-tail distribution along with a
standard normal distribution. Note that there is no unknown parameter
for this distribution.

Given a training set of some observation samples (i.e., DN =
{
xi | i =

1, 2, · · · , N
}
), we can use MLE to learn the linear mixing function x =Wz.

When n = d and W is invertible, we have z =W−1x. According to Eq. (13.1),
the log-likelihood function of the inverse matrix W−1 can be expressed as
follows:

l(W−1) =

N∑
i=1

n∑
j=1

ln p(wᵀj xi) + N ln
��W−1��, (13.9)

where the Jacobian matrix for the inverse mapping from x to z is equal
to W−1 ∈ Rn×n, and wj denotes the jth row vector of W−1. We can easily
compute the gradient of this objective function and use any gradient-
descent method to maximize l(W−1) with respect to W−1. Once the matrix
W−1 is estimated, we can disentangle any observation x to uncover all
independent components in z as z =W−1 x.

In addition to the MLE method, there are many different methods for esti-
mating the mixing function for ICA available in the literature. Interested
readers may refer to Hyvärinen and Oja [107] for other ICA methods.

13.3.2 Independent Factor Analysis (IFA)

Attias [4] proposes a new entangled model, called IFA, to extend the
traditional ICA methods. In IFA, each component of z is assumed to
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follow a Gaussian mixture model (GMM) as

p(zj ) =
M∑
m=1

wjmN(zj |µjm,σ2
jm)

for all j = 1, 2, · · · n. If we substitute these GMMs into Eq. (13.8), we can
show that p(z) is also a larger GMM, where each component corresponds
to a combination of Gaussians from all dimensions in z. This large GMM
is called a factorial GMM. In IFA, all unknown parameters can also be
learned based on MLE. If we substitute the factorial GMM and the linear
mixing function into Eq. (13.2), the log-likelihood function in IFA is very
similar to those in the regular mixture models. Therefore, we can use the
EM algorithm to iteratively learn all unknown parameters of the factorial
GMM and the mixing function from any given training set. Interested
readers can refer to Attias [4] for more details on IFA. Compared with
the ordinary ICA methods, the IFA model can deal with more general
scenarios in blind source separation (e.g., when the dimensions of x and
z are different or when a residual distribution must be used for noisy
observations).

13.3.3 Hybrid Orthogonal Projection and Estimation
(HOPE)

Zhang et al. [261], propose another entangled model, called HOPE, to
model the data distributions in a high-dimensional space. In HOPE, we
assume the factor distribution p(z) is a mixture model in Rn, and the
residual ε follows a simple zero-mean isotropic covariance Gaussian (i.e.,
p(ε) =N(ε | 0,σ2I)) in a separate space Rd−n. The factor z and the residual
ε are statistically independent, and they are mixed by an orthogonal linear
function to generate the final observation x in a higher-dimensional space
Rd :

x =W

z

ε

 ,

where W ∈ Rd×d is a full-rank orthogonal matrix (i.e., WWᵀ = I).

Substituting all of these into Eq. (13.1), we can derive the HOPE model as
follows:

p(x) = p(z) p(ε).

Note that the Jacobian matrix is equal to Wᵀ in this case and
��Wᵀ�� = 1 for

all orthogonal matrices (see Example 2.2.4).

Under this setting, we can easily formulate the likelihood function for
any observed data x. As a result, all HOPE model parameters can be
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efficiently learned using a simple gradient-descent algorithm to explicitly
maximize the log-likelihood. Zhang et al. [261] have shown that this
entangled model is equivalent in model structure to a hidden layer in
regular neural networks when we choose mixtures of the von Mises–Fisher
(vMF) distribution for the factor distribution p(z). As a result, the MLE
of the HOPE models can be applied to unsupervised learning of neural
networks in a layer-wise fashion.

13.4 Deep Generative Models

In all the aforementioned entangled models, we have stuck to a linear
mixing function for computational convenience. However, linear mixing
functions strongly limit the power of the resultant entangled models. In
this section, we will consider more general nonlinear mixing functions for
entangled models.

Similar to discriminative models, we can use deep neural networks to
model the underlying nonlinear mixing functions in entangled models.
Theoretically speaking, we can use neural networks to approximate any Lp

function. This configuration of the mixing functions leads to a category of
powerful entangled models, which are often called deep generative models in
the literature. As suggested by Theorem 13.1.1, as long as the underlying
neural network is large enough, the deep generative models are very
powerful generative models, and in principle, they can be used to model
any data distribution, even when the factor and residual distributions are
very simple. As a result, for deep generative models, we usually choose a
zero-mean and unit-covariance Gaussian for the factor distribution (i.e.,
p(z) =N(z | 0, I)) and a zero-mean and isotropic covariance Gaussian for
the residual distribution (i.e., p(ε) = N(ε | 0,σ2I)), where σ2 denotes the
unknown variance parameter. Meanwhile, we assume the mixing function
is modeled by a deep neural network as f (z; W), where W stands for all
parameters associated with the underlying neural network.

Despite the superior model capacity in theory, deep neural networks are
faced with huge computational challenges in practice. The major difficulty
is that the likelihood function of deep generative models cannot be ex-
plicitly evaluated. This is clear because neither the Jacobian matrix in Eq.
(13.1) nor the integral in Eq. (13.2) is computable when a neural network
is used for the mixing function. Therefore, it is basically intractable to use
MLE for deep generative models. In the following, we will consider two
interesting methods that have managed to bypass this difficulty so that
deep generative models can be learned in some alternative ways.
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13.4.1 Variational Autoencoders (VAE)

Because the likelihood function pΛ(x) of deep generative models cannot be
explicitly evaluated, the basic idea behind the VAE method is to construct
a proxy objective function to replace the intractable likelihood function for
parameter estimation. The proxy function is constructed based on the idea
of approximating the true conditional distribution p(z|x) with a Gaussian
distribution. In deep generative models, the true conditional distribution
p(z|x) in Eq. (13.3) cannot be explicitly evaluated either because it also
involves the integral over the factor z, just like the likelihood function
itself. As motivated by the conditional distribution of linear Gaussian
models, such as Eq. (13.7), we may use a similar x-dependent multivariate
Gaussian distribution to approximate the true conditional distribution
p(z|x) in a deep generative model:

p(z|x) ≈ q(z|x),

with
q(z|x) =N(z | µx,Σx), (13.10)

where the Gaussian mean vector µx and covariance matrix Σx both depend
on the given x. To make it more flexible, we assume both µx and Σx can
be computed from x by another deterministic Lp function h(·), which is
modeled by another deep neural network as follows:[

µx Σx
]
= h(x; V),

where V denotes all model parameters of this neural network. This neural
network maps any observation x into the mean vector and covariance
matrix of the approximate conditional distribution. Hence, this neural
network V is called a probabilistic encoder.

Expand all three terms in the right-hand
side as follows:

1. KL
(
q(z |x)

p(z |x)) =
��
���

���
∫

z
ln q(z |x)q(z |x)dz

−

∫
z

ln p(z |x)q(z |x)dz.

2. Eq(z|x)
[

ln p(x |z)
]
=∫

z
ln p(x |z)q(z |x)dz.

3. −KL
(
q(z |x)

p(z)) =∫
z

ln p(z)q(z |x)dz

−
���

���
��∫

z
ln q(z |x)q(z |x)dz.

Adding these three equations together,
we have

=⇒

∫
z

ln
p(z)p(x |z)
p(z |x)

q(z |x)dz

=

∫
z

ln
p(x, z)
p(z |x)

q(z |x)dz

=

∫
z

ln p(x) q(z |x)dz

= ln p(x).

Using this Gaussian distribution q(z|x), after some simple arrangements,
we can represent the intractable log-likelihood as follows:

l(W,σ |x)︷ ︸︸ ︷
ln p(x) =

≥0︷                  ︸︸                  ︷
KL

(
q(z|x)

p(z|x)
)
+

L(W,V,σ |x)︷                                                ︸︸                                                ︷{
Eq(z |x)

[
ln p(x|z)

]
−KL

(
q(z|x)

p(z)
)}

.

First of all, we can easily verify this equation by expanding all three
terms on the right-hand side and adding them together to arrive at the
log-likelihood function on the left-hand side (see margin note).

Second, we can sort out several key messages from this equation:

1. The first two terms, namely, ln p(x) and KL
(
q(z|x)

 p(z|x)
)
, are not

actually computable because they both involve some intractable
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integrals with respect to some unknown distributions depending on
the neural network in the entangled model.

2. The third term, L(W, V,σ |x), is totally computable because all inte-
grals are only based on the earlier approximate Gaussian distribution
q(z|x), and this term is a function of all model parameters.

3. Moreover, L(W, V,σ |x) is actually a lower bound of the true log-
likelihood function, so it can be used as a proxy function for model
learning.

We have

L(W, V,σ |x) ≤ ln p(x)

because

KL
(
q(z |x)

p(z |x)) ≥ 0.

Kingma and Welling [130] propose an empirical learning procedure to
learn deep generative models by maximizing this proxy function instead
of the intractable likelihood function. Because the proxy function is often
called the variational bound of the log-likelihood function, the correspond-
ing learning method is usually called a variational autoencoder (VAE).

Given a training set (i.e., DN =
{
xi | i = 1, 2, · · · , N

}
), the VAE aims to

learn all model parameters, including the original entangled model as
well as the newly introduced encoder, by maximizing the proxy function
L(W, V,σ |x), as follows:

arg max
W,V,σ

N∑
i=1

L(W, V,σ |xi)

=⇒ arg max
W,V,σ

N∑
i=1

{
Eq(z |xi )

[
ln p(xi |z)

]
−KL

(
q(z|xi)

p(z)
)}

.

As with other neural networks, we will have to rely on the stochastic
gradient-descent method to solve this optimization. The key is how to
compute the gradient of this proxy function with respect to all model
parameters. Because both q(z|xi) and p(z) are Gaussian models, we can
express the Kullback–Leibler (KL) divergence between them in a closed
form so that the gradient of this term can be easily computed (see margin
note).

However, the other term is an expectation of ln p(xi |z) over the approxi-
mate Gaussian distribution. We have no closed-form solution for it, and
instead we will have to rely on a sampling-based method.

Given the factor distribution

p(z) =N(0, I)

and the approximate Gaussian distribu-
tion

q(z |x) =N(z | µx,Σx),

we can compute the KL divergence be-
tween them as

KL
(
q(z |x)

 p(z)
)
=

C +
1
2

(
tr

(
Σx

)
+ µᵀxΣ

−1
x µx − ln

��Σx
��) ,

where C is a constant.

We first randomly sample from this Gaussian distribution, and the ex-
pectation is approximately computed as an average of these samples. For
j = 1, 2, · · ·G, we sample zj as follows:

zj ∼ q(z|xi) =N(z | µxi ,Σxi ),

and we have

Eq(z |xi )
[

ln p(xi |z)
]
≈

1
G

G∑
j=1

ln p(xi |zj).
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However, one difficulty in this procedure is that the samples are drawn
from a distribution that depends on the neural network V. This makes it
hard to explicitly compute the gradient for error back-propagation.

Kingma and Welling [130] use a reparameterization trick to reformulate
the procedure into an equivalent sampling process that does not depend
on any model parameters. As we know, for any sample ε from a zero-mean
unit-covariance Gaussian (i.e., ε ∼ N(ε | 0, I)), the linear transformation
Σ

1
2 ε + µ will make it follow the Gaussian distribution N(z | µ,Σ).

For j = 1, 2, · · · , G, we sample as ε j ∼N(ε | 0, I), and then we have

Eq(z |xi )
[

ln p(xi
�� z)] ≈

1
G

G∑
j=1

ln p(xi
��Σ 1

2
xi ε j + µxi )

= − lnσ −
1
G

G∑
j=1

(
xi − f (Σ

1
2
xi ε j + µxi ; W)

)2

2σ2 ,

where µxi and Σ
1
2
xi are computed from the encoder based on xi as h(xi ; V).

Therefore, we can easily compute the gradient of the sum with respect to
all model parameters (i.e.,

{
W, V,σ

}
) using the automatic differentiation

method discussed in Chapter 8.

Based on the residual distribution

N(ε | 0,σ2I)

and the mixing function

x = f (z; W) + ε,

we have

p(x |z) =N(x − f (z; W) | 0,σ2I).

Therefore, we have

ln p(x |z) = − lnσ −
(
x − f (z; W)

)2

2σ2 .

Figure 13.5: An illustration of the VAE
training procedure to learn deep genera-
tive models [199].

Figure 13.5 summarizes the whole VAE-based training procedure to learn
entangled models by maximizing the previous proxy function L(W, V,σ |x).
As noted earlier, we have introduced another neural network V as a sup-
plementary module to compute the proxy function. At each iteration, we
take any training sample x to feed into V to compute the mean and covari-
ance of the approximate Gaussian distribution. Along with some random
samples from a normal distribution, they are in turn fed to the entangle
model to generate the output. After this, the gradient of the proxy function
with respect to all model parameters (i.e.,

{
W, V,σ

}
) can be computed
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from the output all the way back to the input using the standard error back-
propagation method. The gradients are then used to update the model
parameters. This procedure is repeated over and over until it converges.
Compared with the autoencoder method in Figure 4.15, we can see that
the first neural network V serves as an encoder to generate some codes
for each sample x, and the second neural network works like a decoder to
convert the codes back to an estimate of the sample. The expectation term
in the proxy function may be viewed as a distortion measure between the
initial input x and the recovered output from the decoder.

Finally, it is important to note some fundamental differences between the
proxy function in the VAE training method and the auxiliary function
in the EM algorithm discussed in the last chapter. Unlike the auxiliary
function in the EM method, increasing the proxy function L(W, V,σ |x)
does not necessarily lead to the growth of the likelihood function, not to
mention maximizing the likelihood function. The proxy function and the
log-likelihood function are closely related only when this lower bound is
sufficiently tight. As we can see, the gap between them depends on the KL
divergence between the approximate Gaussian and the true conditional
distribution. Therefore, the VAE training method is highly heuristic, and
the final performance largely depends on how much we can effectively
close this gap in the VAE training, which implicitly relies on whether the
configuration of two neural networks fits well with the given data.

13.4.2 Generative Adversarial Nets (GAN)

As we have seen, the learning of deep generative models is fundamentally
difficult because the likelihood function cannot be explicitly evaluated. In
the VAE training procedure, we attempt to learn all model parameters by
maximizing a tractable proxy function that is a variational lower bound of
the log-likelihood function.

Goodfellow et al. [84] propose a pure sampling-based training proce-
dure to learn deep generative models, which completely abandons the
intractable likelihood function. This training procedure is often called gen-
erative adversarial nets (GANs) because it relies on the competition between
two adversarial neural networks. As shown in Figure 13.6, in order to
learn the deep generative model W, another neural network V has been
introduced for the GAN as a supplementary module. On the one hand, we
can sample the factor distribution p(z) to get many samples of the factor
z, which are sent to the mixing function x = f (z; W) to generate some
so-called ’‘fake” data samples. On the other hand, we can directly sample
the training set to get the so-called ’‘true” samples. Both the true and fake
samples, along with their corresponding true/fake binary labels, are used
to train the neural network V in order to discriminate between true and
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Figure 13.6: An illustration of a training
procedure for entangled models based on
GANs.

fake samples. As a result, the neural network V is also called discriminator;
meanwhile, W is called generator because it aims to generate fake samples
to fool the discriminator. In the training process, both the generator W

and the discriminator V are learned jointly. As stated in Goodfellow et
al. [84], if the training reaches an equilibrium—namely, the discriminator
cannot distinguish fake samples from the true ones in the training set—it
means that we have learned a successful entangled model, working as the
generator W, to generate good samples following the same distribution
as the training data. The learned entangled model can be used to generate
more data samples x from the learned distribution. The fine part of GANs
is that a discriminator is introduced so that the entangled models can be
learned in a way that has nothing to do with the likelihood function.

As a final remark, the GAN training procedure has drawn lots of attention
in many image-generation applications. As we know, the GAN training is
irrelevant to the likelihood function. However, it still lacks a fundamental
understanding of what information is actually learned by the entangled
models in the adversarial competition process. More theoretical works
are needed to answer this fundamental question for all GAN-based meth-
ods.
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Exercises

Q13.1 Assume a joint distribution p(x, y) of two random vectors x ∈ Rn and y ∈ Rn is a linear Gaussian model
defined as follows:

p(x) =N
(
x

�� µ,∆−1) ,
where µ ∈ Rn is the mean vector; ∆ ∈ Rn×n is the precision matrix; and

p(y | x) =N
(
y

�� Ax + b, L−1) ,
where A ∈ Rn×n, b ∈ Rn, and L ∈ Rn×n is the precision matrix. Derive the mean vector and covariance
matrix of the marginal distribution p(y) in which the variable x has been integrated out.
Hints: 

A B

C D


−1

=


M −MBD−1

−D−1CM D−1 +D−1CMBD−1


with M =

(
A −BD−1C

)−1.

Q13.2 Show the procedure to derive Eq. (13.4) for liner Gaussian models.

Q13.3 Derive the conditional distribution in Eq. (13.7) for probabilistic PCA models.

Q13.4 Derive the conditional distribution p(z|x) for factor analysis.

Q13.5 Factor analysis can be viewed as an infinite mixture model in Q12.5, where the factor z is considered to be
the continuous mixture index, and p(z) and p(x|z) are viewed as mixture weights and component models,
respectively. Extend the EM algorithm for infinite mixture models in Q12.5 to derive another MLE method
for factor analysis.

Q13.6 Compute the gradient for the ICA log-likelihood function in Eq. (13.9), and derive a gradient-descent
method for the MLE of ICA.

Q13.7 Derive a stochastic gradient-descent (SGD) algorithm for VAE to train a convolutional neural network
(CNN)–based deep generative model for image generation, using a convolution-layer-based encoder and
a deconvolution-layer-based decoder [148].

Q13.8 Derive an SGD algorithm for a GAN to train a CNN-based deep generative model for image generation,
using a convolution-layer-based encoder and a deconvolution-layer-based decoder [148].
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In the previous chapters, we have thoroughly discussed various types
of generative models in machine learning. As we have seen, generative
models are essentially parametric probability functions that are used to
model data distributions, denoted as pθ(x). In the previous setting, we
first choose a functional form for pθ(x) according to the nature of the data
and then estimate the unknown parameters θ based on some training
samples. A common approach for parameter estimation is maximum
likelihood estimation (MLE). An important implication in this setting is
that we only treat data x as random variables, whereas model parameters
θ are viewed as some unknown but fixed quantities. The MLE method
provides some particular statistical estimates for these unknown quantities
by maximizing the likelihood function. In this chapter, we will consider a
totally different treatment for generative models, which leads to another
school of machine learning approaches parallel to what we have learned in
the previous chapters. These methods are normally referred to as Bayesian
learning because they are all founded on the well-known Bayes’s theorem
in statistics. This chapter introduces Bayesian learning as an alternative
strategy to learn generative models and discusses how to make inferences
under the Bayesian setting.

14.1 Formulation of Bayesian Learning

In the Bayesian learning framework, the most important premise is that
the model parameters θ of generative models are also treated as random
variables. Similar to data x, the model parameters θ of a generative model
may randomly take different values according to a particular probability
distribution, denoted as p(θ). In this case, there is no fundamental distinc-
tion between the data x and the model parameters θ. Therefore, in the
Bayesian setting, we prefer to rewrite a generative model pθ(x) as a condi-
tional distribution p(x | θ), which describes how the data x are distributed
when the model parameters θ are given. Putting these together, we can
represent the joint distribution of the data x and the model parameters θ
as follows:

Because p(θ) is a valid probability density
function (p.d.f.), it satisfies the sum-to-1
constraint: ∫

θ
p(θ) dθ = 1.

p(x, θ) = p(θ) p(x | θ).
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Substituting this into the well-known Bayes’s theorem, we have

p(θ | x) =
p(x, θ)
p(x)

=
p(θ) p(x|θ)

p(x)
.

If we focus on the model parameters θ, we can see that the denominator
p(x), often called evidence, has nothing to do with θ, and it is just a normal-
ization factor to ensure that p(θ | x) satisfies the sum-to-1 constraint (see
margin note). Therefore, we may simplify the previous formula asThe denominator p(x) is computed as

p(x) =
∫
θ
p(θ) p(x | θ) dθ.

This ensures the sum-to-1 constraint:∫
θ
p(θ |x)dθ = 1.

p(θ |x) ∝ p(θ) p(x|θ).

This formula highlights the fundamental principle of Bayesian learning.
In the Bayesian setting, model parameters are treated as random variables.
As we have seen, the best way to describe random variables is to specify
their probability distribution. Here, p(θ) is the probability distribution
of the model parameters at an initial stage before any data are observed.
As a result, p(θ) is normally called the prior distribution of the model pa-
rameters, which represents our initial belief and background knowledge
about the model parameters. On the other hand, once some data x are
observed, this new information will convert the prior distribution into
another distribution (i.e., p(θ |x)), based on the previously described learn-
ing rule. The new distribution of model parameters is normally called the
posterior distribution, which fully specifies our knowledge about the model
parameters after some new information is added in. As we have learned
previously, the term p(x | θ) is the likelihood function. The Bayesian learn-
ing rule indicates that the optimal way to combine our prior knowledge
and the new information is to follow a multiplication rule, conceptually
represented as follows:

posterior ∝ prior × likelihood.

Moreover, the Bayesian learning rule can also be similarly applied to a
set of data samples instead of one. For example, if we are given a set
of independent and identically distributed (i.i.d.) training samples as
D =

{
x1, x2, · · · , xN

}
, we may apply Bayesian learning as follows:

p(θ |D) ∝ p(θ) p(D|θ) = p(θ)
N∏
i=1

p(xi |θ), (14.1)

where p(θ |D) denotes the posterior distribution of the model parameters
after we have observed the entire training set D. Bayesian theory states
that p(θ |D) optimally combines the initial knowledge in the prior dis-
tribution with the new information provided by the training set. In the
Bayesian setting, the optimal inference for any new data must solely rely
on this posterior distribution.
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Figure 14.1: An illustration of the
Bayesian learning rule as multiplying
prior with likelihood, followed by renor-
malization.

Here, let us summarize three key steps in any Bayesian approach for
machine learning:

1. Prior specification
In any Bayesian approach, we always need to first specify a prior dis-
tribution (i.e., p(θ)) for any generative models that we are interested
in. The prior distribution is used to describe our prior knowledge of
the model used for a machine learning task. Theoretically speaking,
the prior distributions should be flexible and powerful enough to
reflect our prior knowledge of or initial beliefs about the underlying
models. However, in practice, the priors are often chosen in such a
way to ensure computational convenience. We will discuss this issue
in detail in Section 14.2.

2. Bayesian learning
Once any new data D are observed, we follow the multiplication
rule of Bayesian learning to update our belief on the underlying
model, converting the prior distribution p(θ) into a new posterior
distribution p(θ |D). As shown previously, Bayesian learning itself
is conceptually simple because it only involves a multiplication
between the prior distribution and the likelihood function, then
a renormalization operation to ensure the sum-to-1 constraint, as
shown in Figure 14.1. However, the posterior distribution derived
from the Bayesian learning may get very complicated in nature,
except in some simple scenarios. The central issue in practice is how
to approximate the true posterior distribution in such a way that the
following inference step is mathematically tractable. We will come
back to discuss these approximation methods in Section 14.3.

3. Bayesian inference
After the Bayesian learning step, it is believed that all available
information on the underlying model has been contained in the
posterior distribution p(θ |D). Bayesian theory suggests that any
inference or decision making must solely rely on p(θ |D), including
classification, regression, prediction, and so on. In the remainder of
this section, we will continue to discuss the general principles on
how to use this posterior distribution for Bayesian inference.

14.1.1 Bayesian Inference

In the Bayesian setting, we start with a prior distribution of the model pa-
rameters p(θ). Once some training samples Dare observed, we can update
the prior distribution into a posterior distribution using the Bayesian learn-
ing rule in Eq. (14.1). Bayesian inference is concerned with how to make a
decision for any new data x based on the updated posterior distribution
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p(θ | D). Bayesian theory suggests that the optimal decision must be made
based on the so-called predictive distribution [78] , which is computed as
follows:

p(x | D) =
∫
θ

p(x | θ) p(θ | D) dθ, (14.2)

where p(x | θ) denotes the likelihood of the underlying model. Because
the model parameters θ are random variables rather than some fixed
quantities, we will have to average over all possible values based on the
posterior distribution derived from the Bayesian learning stage.

As an example, let us consider how to apply this Bayesian reference
to a pattern-classification task. Assume we have K classes, denoted as{
ω1,ω2, · · · ,ωK

}
. The prior probabilities for all classes are denoted as

Pr(ωk ) (k = 1, 2, · · · , K). Each class-conditional distribution is modeled by
a generative model θk as p(x |ωk , θk ). For each class ωk (k = 1, 2, · · · , K),
the model parameters θk are assumed to be random variables, and we
specify a prior distribution p(θk ) to encode our prior knowledge of each
model. Assume we collect a training set for each class, denoted as Dk , for
all k = 1, 2, · · · , K . We first conduct Bayesian learning for each model θk to
convert the prior p(θk ) into the posterior p(θk | Dk ), as follows:

p(θk | Dk ) =
p(θk ) p(Dk |ωk , θk )

p(Dk )
∝ p(θk ) p(Dk |ωk , θk ).

Given any new data x, we classify the data to a class according to the
predictive distributions of all classes, as follows:

g(x) = arg maxK
k=1 p(x | Dk )

= arg maxK
k=1 Pr(ωk )

∫
θk

p(x|ωk , θk ) p(θk | Dk ) dθk .

This approach is normally called Bayesian classification.

14.1.2 Maximum a Posterior Estimation

As we know, the central cornerstone in Bayesian learning is the posterior
distribution of model parameters because it represents the full knowledge
about the underlying model by optimally combining our prior knowledge
with the new information from the observed data. However, in practice,
it is computationally challenging to make use of the posterior distribu-
tion because it involves some intractable integrals in several stages of the
pipeline. First, we need to solve an integral to compute p(x) for the renor-
malization in Bayesian learning. Second, we also have to solve an integral
in Eq. (14.2) to compute the predictive density for Bayesian inference.
Unfortunately, these integrals are intractable in most cases.

p(x) =
∫
θ
p(θ)p(x |θ) dθ.
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Figure 14.2: Comparison between MAP
and maximum-likelihood estimates is il-
lustrated in a simple case involving a sin-
gle model parameter.

Given the fact that the posterior distribution is the only means to fully
specify our beliefs about the underlying models in any Bayesian setting,
sometimes it may be convenient to use point estimation to represent the
model parameters even though they are random variables. In other words,
we want to use the posterior distribution to calculate a single value to
represent each model parameter, which is normally called a point estimate
because it identifies a point in the whole space of model parameters.
Analogous to the maximum-likelihood estimate, a common approach is to
find the maximum value of the posterior distribution as a point estimate
for model parameters, as follows:

θMAP = arg max
θ

p(θ | D) = arg max
θ

p(θ) p(D | θ). (14.3)

This approach is normally called maximum a posteriori (MAP) estimation.
The MAP estimate of model parameters (i.e., θMAP) can be used in the same
way as the maximum-likelihood estimate (i.e., θMLE), as discussed in the
previous chapters. The MAP estimation can be viewed as an alternative
approach to MLE. The difference between MAP and maximum-likelihood
estimates is intuitively shown in Figure 14.2. As opposed to the maximum-
likelihood estimate that solely depends on the likelihood function, the
MAP estimate is derived from a mode of the posterior distribution, which
in turn depends on both the prior distribution and the likelihood func-
tion.

Once a prior distribution is properly chosen, we can choose some standard
optimization methods to derive the MAP estimation in Eq. (14.3). For
example, we can obtain closed-form solutions for many simple models,
and we can also use the expectation-maximization (EM) algorithm in
Section 12.2 to derive the MAP estimation for mixture models [52]. Refer
to Exercise Q14.7 for the MAP estimation of Gaussian mixture models
(GMMs).

14.1.3 Sequential Bayesian Learning

Bayesian learning is also an excellent tool for online learning, where the
data are coming one by one rather than all training data being obtained as
a chunk. As shown in Figure 14.3, we still start from a prior distribution
p(θ) before any data are observed. After the first sample x1 is observed,
we can apply the Bayesian learning rule to update it into the posterior
distribution p(θ | x1), as follows:

p(θ | x1) ∝ p(θ)p(x1 | θ),

which can be used to make any decision at this point. When another sam-
ple x2 comes in, we treat p(θ | x1) as a new prior, and we repeatedly apply
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the same Bayesian learning rule to derive a new posterior distribution
p(θ |x1, x2), as follows:

p(θ | x1, x2) ∝ p(θ | x1) p(x2 | θ),

which is accordingly used to make any decision at this time. This process
may continue whenever any new data arrive. At any time, the updated
posterior distribution serves as the foundation for us to make any decision
because it essentially combines all knowledge and information available at
each time instance. Under some minor conditions, this sequential Bayesian
learning converges to the same posterior distribution in Eq. (14.1) that
uses all data only once.

Figure 14.3: An illustration of sequential
Bayesian learning in an online learning
setting, where the Bayesian learning rule
is repeatedly applied to update the poste-
rior distribution of the model parameters.

In many practical scenarios, sequential Bayesian learning is a good strat-
egy to dynamically adapt the underlying models to cope with a slowly
changing environment, such as in robot navigation.

Example 14.1.1 Sequential Bayesian Learning

Assume we use a univariate Gaussian model with a known variance to
represent a data distribution as p(x | µ) =N(x | µ,σ2

0 ), where the mean µ

is the only model parameter, and σ2
0 is a given constant. If some training

samples arrive one by one at each time instance as x1, x2, x3, · · · , use the
sequential Bayesian learning method to update the model at each time
when each new sample arrives.

First of all, we represent the underlying model as

p(x | µ) =N(x | µ,σ2
0 ) =

1√
2πσ2

0

e
−
(x−µ)2

2σ2
0 ,

where µ is the only parameter in the model, which is assumed to be a ran-
dom variable. We assume the prior distribution p(µ) is another univariate
Gaussian distribution, as follows:We have a good reason to choose a Gaus-

sian distribution for the prior in this case,
which will be explained later.

p(µ) =N(µ | ν0, τ2
0 ) =

1√
2πτ2

0

e
−
(µ−ν0)

2

2τ2
0 ,
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where the mean ν0 and variance τ2
0 are the parameters of the prior distri-

bution, which are often called the hyperparameters. They are normally set
according to our initial beliefs about the model parameter µ. For example,
if we are quite uncertain about µ, the variance τ2

0 should be large, and the
prior tends to be a relatively flat distribution to reflect the uncertainty.

Once we observe the first sample x1, we apply the Bayesian learning as
follows:

p(µ|x1) ∝ p(µ)p(x1 |µ) =
1√

2πτ2
0

e
−
(µ−ν0)

2

2τ2
0 ×

1√
2πσ2

0

e
−
(x1−µ)

2

2σ2
0 .

As for

p(µ |x1) ∝ e
−
(µ−ν0 )

2

2τ2
0
−
(x1−µ)

2

2σ2
0 ,

we complete the square with respect to
(w.r.t.) µ for the exponent as follows:

−
1
2

[
(µ −ν0)

2

τ2
0

+
(x1 − µ)

2

σ2
0

]
= −
(τ2

0 +σ
2
0 )µ

2 − 2µ(ν0σ
2
0 + x1τ

2
0 )

2τ2
0σ

2
0

+C

= −
τ2

0 +σ
2
0

2τ2
0σ

2
0

(
µ2 − 2µ

ν0σ
2
0 + x1τ

2
0

τ2
0 +σ

2
0

)
+C′

= −
τ2

0 +σ
2
0

2τ2
0σ

2
0

(
µ −

ν0σ
2
0 + x1τ

2
0

τ2
0 +σ

2
0

)2

+C”.

After renormalizing, we have

p(µ |x1) =N(µ |ν1,τ2
1 ),

as specified in Eq. (14.4), where the mean
ν1 and the variance τ2

1 are given in Eqs.
(14.5) and (14.6).

After we renormalize it (see margin note), we can represent the posterior
distribution as another Gaussian distribution, which has the same func-
tional form as the prior but takes a different mean and variance, as follows:

p(µ | x1) =N(µ | ν1, τ2
1 ) =

1√
2πτ2

1

e
−
(µ−ν1)

2

2τ2
1 , (14.4)

with

ν1 =
σ2

0

τ2
0 + σ

2
0

ν0 +
τ2

0

τ2
0 + σ

2
0

x1 (14.5)

τ2
1 =

τ2
0σ

2
0

τ2
0 + σ

2
0

. (14.6)

Similarly, after observing another sample x2, the posterior is again another
univariate Gaussian taking a different mean and variance, as follows:

ν2 =
σ2

0

τ2
1 + σ

2
0

ν1 +
τ2

1

τ2
1 + σ

2
0

x2

τ2
2 =

τ2
1σ

2
0

τ2
1 + σ

2
0

.

After observing n samples
{

x1, x2, · · · xn
}
, we can realize that the poste-

rior distribution p(µ|x1, · · · xn) is still a Gaussian distribution, denoted as
N(µ|νn, τ2

n), with the updated mean and variance as follows:

νn =
nτ2

0

nτ2
0 + σ

2
0

x̄n +
σ2

0

nτ2
0 + σ

2
0

ν0 (14.7)

τ2
n =

τ2
0σ

2
0

nτ2
0 + σ

2
0

, (14.8)
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Figure 14.4: An illustration of how the
posterior distributions evolve in the se-
quential Bayesian learning of a univariate
Gaussian model.

where x̄n = 1
n

∑n
i=1 xi denotes the sample mean of all observed data.

As shown in Figure 14.4, we can see that the posterior distribution is
gradually updated whenever a new data sample is available. The posterior
distribution gets sharper and sharper as we observe more and more data
because we can see the variance τ2

n → 0 as n → ∞ from the previous
formula. This indicates that we are becoming more certain of the model
parameter after observing more data samples. Moreover, we can also verify
that the MAP estimate µMAP = νn will converge to the maximum-likelihood
estimation µMLE = x̄n as n→∞. �

14.2 Conjugate Priors

As we have discussed, even though Bayesian learning follows a simple
multiplication rule, it still can make the resulting posterior distribution
significantly more complicated than the prior distribution because of the
complexity of the underlying likelihood function as well as the intractabil-
ity of the integral in renormalization. On the other hand, Example 14.1.1
shows a good scenario of Bayesian learning from the perspective of com-
putation. In that case, if we choose the prior distribution as a univariate
Gaussian, we have seen that the posterior distribution derived from the
Bayesian learning rule happens to take the same functional form as the
prior (i.e., another univariate Gaussian), only taking updated parameters.
This choice for a prior distribution allows us to enjoy great computational
convenience in Bayesian learning because the multiplication of the prior
and likelihood function ends up with the same functional form as the
prior. Furthermore, we can even repeatedly apply the Bayesian learning
rule as in the previous sequential learning case without complicating the
functional form of any posterior at all.

Generally speaking, given a generative model, if we can find a particular
functional form for the prior distribution so that the resultant posterior
distribution from the Bayesian learning in Eq. (14.1) also takes the same
functional form as the prior, we call this prior distribution a conjugate prior
of the underlying generative model. In Example 14.1.1, the univariate
Gaussian is the conjugate prior of the underlying model in that example,
namely, a Gaussian model with known variance. However, the conjugate
prior does not exist for all generative models, and in fact, only a small
fraction of generative models have a conjugate prior. Once conjugate priors
exist for the underlying models, we almost always choose the conjugate
priors in Bayesian learning because of the huge computational advantage
it offers. The well-established results in statistics [51, 26] have shown that
a conjugate prior exists for all generative models in the e-family, and the
exact form of the conjugate priors varies with the corresponding models.
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Model p(x|θ) Conjugate prior p(θ)

1D Gaussian (known variance) 1D Gaussian

N(x | µ,σ2
0 ) N(µ | ν, τ2)

1D Gaussian (known mean) Inverse-gamma

N(x | µ0,σ2) gamma−1(σ2 | α, β)

Gaussian (known covariance) Gaussian

N(x | µ,Σ0) N(µ | ν,Φ)

Gaussian (known mean) Inverse-Wishart

N(x | µ0,Σ) W−1(Σ |Φ, ν)

Multivariate Gaussian Gaussian-inverse-Wishart

N(x | µ,Σ) GIW(µ,Σ | ν,Φ, λ, ν) =

N(µ | ν, 1
λΣ)W

−1(Σ |Φ, ν)

Multinomial Dirichlet

Mult(r |w) = C(r) ·
∏M

i=1 w
ri
i Dir(w | α) = B(α) ·

∏M
i=1 w

αi−1
i

with C(r) = (r1+· · ·+rM )!
r1 ! · · ·rM ! with B(α) = Γ(α1+· · ·+αM )

Γ(α1)·· ·Γ(αM )

Table 14.1: A list of conjugate priors for
some common e-family models used in
machine learning. 1D = one-dimensional.

Note that the inverse-gamma distribution
takes the following form:

gamma−1(x | α, β) =
βα

Γ(α)
x−α−1e−

β
x

for all x > 0.

Table 14.1 lists the corresponding conjugate priors for several e-family
distributions that play an important role in machine learning. For example,
the conjugate prior of a multinomial model is a Dirichlet distribution. For
a Gaussian model, if we know its covariance matrix, the conjugate priors
are also Gaussian. If we know its mean vector, the conjugate priors are
the so-called inverse-Wishart distributions (see margin note). If both the
mean and covariance are unknown parameters, the conjugate priors are a
product of Gaussian and inverse-Wishart distributions, which is normally
called a Gaussian-inverse-Wishart (GIW) distribution.

Note that the inverse-Wishart distribu-
tion takes the following form:

W−1 (Σ |Φ,ν
)
=��Φ��ν/2

2νd/2 Γ
(
ν
2
) ��Σ ��− ν+d+1

2 e−
1
2 tr(ΦΣ−1),

where Σ ∈ Rd×d , Φ ∈ Rd×d , ν ∈ R+,
and Γ(·) represent the multivariate gamma
function, and tr denotes the matrix trace.

The following two examples explain how to use conjugate priors for
Bayesian learning of simple generative models in the e-family. In particular,
they will show how the choice of conjugate priors can lead to some closed-
form solutions to the MAP estimation of these models.

Example 14.2.1 Multinomial Models

If we use a multinomial model (i.e., Mult
(
r |w

)
) to represent a distribu-

tion of some counts of M distinct symbols (i.e., r =
[
r1 r2 · · · rM

]
, where

ri ∈ N ∪ {0} for all i = 1, 2, · · ·M), we can use the conjugate prior to
derive the MAP estimation of the model parameters w =

[
w1 · · ·wM

]
.

For example, the bag-of-words feature in
Figure 4.1 is a set of counts of distinct
words in a text document.

From Table 14.1, we choose the conjugate prior for the multinomial model,
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which is a Dirichlet distribution, given as follows:

p(w) = Dir(w | α(0)) = B(α(0)) ·
M∏
i=1

w
α
(0)
i −1

i ,

where the hyperparameters α(0) =
[
α
(0)
1 α

(0)
2 · · · α

(0)
M

]
are manually set based

on our prior knowledge of the model parameter w.

Given a sample of some counts (i.e., r =
[
r1 r2 · · · rM

]
), we compute the

likelihood function of w as

p(r |w) =Mult
(
r |w

)
= C(r) ·

M∏
i=1

wri
i .

We apply the Bayesian learning rule in Eq. (14.1) as follows:

p(w | r) ∝ p(w) p(r |w) ∝
M∏
i=1

w
α
(0)
i +ri−1

i .

If we denote α(1) =
[
α
(1)
1 · · · α

(1)
M

]
with each element as

α
(1)
i = α

(0)
i + ri for all i = 1, 2, · · · , M

and renormalize the equation, we derive the posterior distribution as
follows:

p(w | r) = Dir(w | α(1)) = B(α(1)) ·
M∏
i=1

w
α
(1)
i −1

i .

The MAP estimation of model parameter w is computed by solving the
following constrained optimization problem:

w(MAP) = arg max
w

p(w | r) subject to
M∑
i=1

wi = 1.

Using the method of Lagrange multipliers, we can solve w(MAP) in a closed-
form solution. Each element in w(MAP) is computed asIt is clear that the MAP estimate depends

on both the prior α(0) and the training
data r.

w
(MAP)

i =
α
(1)
i − 1∑M

i=1 α
(1)
i −M

=
ri + α

(0)
i − 1∑M

i=1
(
ri + α

(0)
i

)
−M

for all i = 1, 2, · · · , M .

�

Next, let us investigate how to use the conjugate prior for Bayesian learn-
ing of multivariate Gaussian models.
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Example 14.2.2 Multivariate Gaussian Models

We use a multivariate Gaussian to represent a data distribution in Rd

as p(x | µ,Σ) =N(x | µ,Σ), where both the mean vector µ ∈ Rd and the
covariance matrix Σ ∈ Rd×d are unknown model parameters. Given
a training set of N samples as DN =

{
x1, x2, · · · xN

}
, use the conjugate

prior to derive the MAP estimation of all model parameters (µ and Σ).

First of all, from Table 14.1, we choose the conjugate prior for this multi-
variate Gaussian model, which is a GIW distribution, shown as follows:

Note that the normalization factor

c0 =
λ

1/2
0 ·

��Φ0
��ν0/2

(2π)d/2 · 2ν0d/2 · Γ(
ν0
2 )

is a constant independent of µ and Σ.

p
(
µ,Σ

)
= GIW

(
µ,Σ

�� ν0,Φ0, λ0, ν0
)

=N
(
µ

�� ν0,
1
λ0
Σ
)
W−1

(
Σ

��Φ0, ν0

)
=

λ
1/2
0

(2π)d/2 |Σ |1/2
e−

λ0(µ−ν0)
ᵀΣ−1(µ−ν0)
2

��Φ0
��ν0/2

2ν0d/2 Γ
(ν0

2
) ��Σ ��− ν0+d+1

2 e−
1
2 tr(Φ0Σ

−1)

= c0
��Σ−1 �� ν0+d+2

2 exp
[
−

1
2
λ0

(
µ − ν0

)ᵀ
Σ−1 (µ − ν0

)
−

1
2

tr
(
Φ0Σ

−1) ] ,

where the hyperparameters
{
ν0,Φ0, λ0, ν0

}
will have to be manually set

based on our prior knowledge of the Gaussian model parameters.

Second, if we denote the sample mean, x̄, and the sample covariance
matrix, S, of all training samples in DN as

x̄ =
1
N

N∑
i=1

xi and S =
1
N

N∑
i=1

(xi − x̄)(xi − x̄)ᵀ,

we can compute the likelihood function as follows:

See Exercise Q14.2 for

N∑
i=1

(
xi − µ

)ᵀ
Σ−1 (xi − µ

)
=

N∑
i=1

(
xi − x̄

)ᵀ
Σ−1 (xi − x̄

)
+N (µ − x̄)ᵀΣ−1(µ − x̄).

See Exercise Q14.2 for

N∑
i=1

(
xi − x̄

)ᵀ
Σ−1 (xi − x̄

)
= tr

( ( N∑
i=1

(xi − x̄)(xi − x̄)ᵀ
)
Σ−1

)
= tr

(
NSΣ−1

)
.

p
(
DN

�� µ,Σ
)
=

N∏
i=1

p
(
xi

�� µ,Σ
)

=

��Σ−1
�� N2

(2π)Nd/2 exp
[
−

1
2

N∑
i=1

(
xi − µ

)ᵀ
Σ−1 (xi − µ)︸                           ︷︷                           ︸

see margin note

]

=

��Σ−1
�� N2

(2π)Nd/2 exp
[
−

1
2

N∑
i=1

(
xi − x̄

)ᵀ
Σ−1 (xi − x̄

)
︸                          ︷︷                          ︸
tr
( (∑N

i=1(xi−x̄)(xi−x̄)ᵀ
)
Σ−1

)
−

N
2
(µ − x̄)ᵀΣ−1(µ − x̄)

]
.

Furthermore, we can represent the previous likelihood function of the
multivariate Gaussian model with the sample mean vector, x̄, and the
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sample covariance matrix, S, as follows:

p
(
DN

�� µ,Σ
)
=

��Σ−1
�� N2

(2π)Nd/2 exp
[
−

1
2

tr
(
NSΣ−1) − N

2
(µ − x̄)ᵀΣ−1(µ − x̄)

]
.

Next, when we apply the Bayesian learning rule, we can derive the poste-
rior distribution as follows:

p
(
µ,Σ

�� DN

)
∝ GIW

(
µ,Σ

�� ν0,Φ0, λ0, ν0
)
· p

(
DN

�� µ,Σ
)
.

For how to merge the two terms with re-
spect to µ:

λ0
(
µ−ν0

)ᵀ
Σ−1 (µ−ν0

)
+N (µ− x̄)ᵀΣ−1(µ− x̄)

= (λ0 + N )µᵀΣ−1µ − 2µᵀΣ−1(λ0ν0 + N x̄)

+λ0ν
ᵀ
0Σ
−1ν0 + N x̄ᵀΣ−1x̄

= (λ0 + N )
[
µᵀΣ−1µ − 2µᵀΣ−1 λ0ν0 + N x̄

λ0 + N

]
+λ0ν

ᵀ
0Σ
−1ν0 + N x̄ᵀΣ−1x̄

= λ1
(
µ −ν1

)ᵀ
Σ−1 (µ −ν1

)
−
(λ0ν0 + N x̄)ᵀΣ−1(λ0ν0 + N x̄)

λ0 + N

+λ0ν
ᵀ
0Σ
−1ν0 + N x̄ᵀΣ−1x̄

= λ1
(
µ −ν1

)ᵀ
Σ−1 (µ −ν1

)
+
λ0N

λ0 + N

(
x̄ −ν0

)ᵀ
Σ−1 (x̄ −ν0

)︸                     ︷︷                     ︸
tr
( (

x̄−ν0

) (
x̄−ν0

)ᵀ
Σ−1

)
.

We can further denote the following:

λ1 = λ0 + N (14.9)

ν1 = ν0 + N (14.10)

ν1 =
λ0ν0 + N x̄
λ0 + N

(14.11)

Φ1 = Φ0 + NS +
λ0N
λ0 + N

(
x̄ − ν0

) (
x̄ − ν0

)ᵀ. (14.12)

After substituting the prior and likelihood function into the previous
equation and merging the terms (see margin note), we finally derive

p
(
µ,Σ

�� DN

)
∝

��Σ ��− ν1+d+2
2 exp

[
−

1
2
λ1

(
µ − ν1

)ᵀ
Σ−1 (µ − ν1

)
−

1
2

tr
(
Φ1Σ

−1) ] .

According to Haff [89], we can explicitly solve the integral of the previous
equation w.r.t. µ and Σ and properly normalize it as a valid probability
distribution:

p
(
µ,Σ

�� DN

)
= c1

��Σ−1�� ν1+d+2
2 exp

[
−

1
2
λ1

(
µ− ν1

)ᵀ
Σ−1 (µ− ν1

)
−

1
2

tr
(
Φ1Σ

−1) ]
with a new normalization factor

c1 =
λ

1/2
1 ·

��Φ1
��ν1/2

(2π)d/2 · 2ν1d/2 · Γ(
ν1
2 )

.

We can see that the posterior distribution is still a GIW distribution with
all hyperparameters updated in Eqs. (14.9)–(14.12):

p
(
µ,Σ

�� DN

)
= GIW

(
µ,Σ

�� ν1,Φ1, λ1, ν1
)
. (14.13)
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The MAP estimation of Gaussian model parameters is computed as{
µMAP,ΣMAP

}
= arg max

µ,Σ
p
(
µ,Σ

�� DN

)
.

According to Kendall et al. [127], the mode of the Gaussian-inverse-
distribution can be derived in the following closed-form solution:

We can see that the MAP estimation de-
pends on both the prior and the training
data. As N → ∞, the MAP estimate ap-
proaches the MLE.

µMAP = ν1 =
λ0ν0 + N x̄
λ0 + N

ΣMAP =
Φ1

ν1 + d + 1

=
Φ0 + NS + λ0N

λ0+N

(
x̄ − ν0

) (
x̄ − ν0

)ᵀ
ν0 + N + d + 1

.

�

14.2.1 Maximum-Marginal-Likelihood Estimation

Another issue related to the prior specification is how to set the hyperpa-
rameters in the chosen prior distribution. The strict Bayesian theory argues
that the prior specification is a subject matter and that all hyperparameters
should be set based on our prior knowledge of and initial beliefs about
the model parameters. In these cases, setting the hyperparameters is more
an art than a science.

On the other hand, in the so-called empirical Bayes methods [158], we aim
to estimate the prior distribution from the data. Assume we have chosen
the prior distribution as p(θ | α), where θ denotes the model parameters,
and α denotes the unknown hyperparameters. Given a training set D

of some data samples, we may compute the so-called marginal likelihood
by marginalizing out the model parameters in the standard likelihood
function as follows:

p(D | α) =
∫
θ

p(D | θ) p(θ | α) dθ.

In this case, we may choose the hyperparameters that maximize the
marginal likelihood p(D | α) as

α∗ = arg max
α

p(D | α).

This method of setting the hyperparameters for a prior distribution is
usually called maximum-marginal-likelihood estimation.
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14.3 Approximate Inference

As we have seen from the previous sections, conjugate priors are a very
convenient tool to facilitate computation in Bayesian learning. However,
the conjugate priors exist only for a small number of relatively simple gen-
erative models. For most generative models popular in machine learning,
we cannot rely on the concept of conjugate priors to simplify Bayesian
learning. For these generative models, the Bayesian learning rule will
inevitably yield very complicated and even intractable posterior distri-
butions. In practice, a well-adopted strategy is to use some manageable
probability functions to approximate the true but intractable posterior
distributions in Bayesian learning. In the following, we will consider two
widely used approximate inference methods in Bayesian learning. The
first method aims to approximate the true posterior distributions using
tractable Gaussian distributions, which leads to the traditional Laplace’s
method [139]. Second, a convenient computational framework called the
variational Bayesian (VB) method [5] has been recently proposed to approx-
imate the true posterior distributions using a family of more manageable
probability functions that can be factorized among various model parame-
ters.

14.3.1 Laplace’s Method

The key idea behind Laplace’s method is to approximate the true posterior
distribution using a multivariate Gaussian distribution. Let’s discuss how
to construct such a Gaussian distribution to approximate an arbitrary
posterior distribution. We first find a MAP estimate θMAP at a mode of the
true posterior distribution p(θ | D). Second, we expand the logarithm of
the true distribution, denoted as f (θ) = ln p(θ | D), around θMAP according
to Taylor’s theorem:

f (θ) = f (θMAP) + ∇(θMAP)
(
θ − θMAP

)
+

1
2!

(
θ − θMAP

)ᵀH(θMAP)
(
θ − θMAP

)
+ · · · ,

where ∇(θMAP) and H(θMAP) denote the gradient and Hessian matrix, respec-
tively, of the function f (θ) evaluated at θMAP.

Because the MAP estimate θMAP is a maximum point of the true posterior
distribution, we have ∇(θMAP) = 0, and H(θMAP) is a negative definite matrix.
Laplace’s method [153, 6] aims to approximate f (θ) using the second-order
Taylor series around a stationary point θMAP:

f (θ) ≈ f (θMAP) +

(
θ − θMAP

)ᵀH(θMAP)
(
θ − θMAP

)
2

.



14.3 Approximate Inference 325

Figure 14.5: An illustration of how to con-
struct a multivariate Gaussian distribu-
tion to approximate the true posterior dis-
tributions in Laplace’s method.

After we take the exponent of both sides and properly normalize the
right-hand side, it yields a multivariate Gaussian distribution well approx-
imating the true posterior distribution around θMAP, as shown in Figure
14.5:

p(θ | D) ≈ C · exp
(1

2
(
θ − θMAP

)ᵀH(θMAP)
(
θ − θMAP

) )︸                                                  ︷︷                                                  ︸
N
(
θMAP,−H−1(θMAP)

) .

In summary, Laplace’s method requires us to find a MAP estimation and
then evaluate the Hessian matrix at this point to construct the approx-
imating Gaussian distribution. In the following, we will use Bayesian
learning of logistic regression as an example to show how to construct the
approximating Gaussian with Laplace’s method.

As shown in Section 11.4, logistic regression is a generative model for
binary-classification problems. Given a training set of input–output pairs,
D =

{
(x1, y1), (x2, y2), · · · , (xN , yN )

}
, where each xi ∈ Rd and yi ∈ {0, 1},

the likelihood function of logistic regression is expressed as

p(D |w) =
N∏
i=1

(
l(wᵀxi)

)yi (
1 − l(wᵀxi)

)1−yi
,

where w ∈ Rd denotes the parameters of the logistic regression model,
and l(·) is the sigmoid function in Eq. (6.12).

There exist no conjugate priors for any generalized linear models in Sec-
tion 11.4, including logistic regression. For computational convenience,
we choose a Gaussian distribution as the prior distribution of model pa-
rameters w:

p(w) =N
(
w |w0,Σ0

)
,

where the hyperparameters w0 and Σ0 denote the mean vector and covari-
ance matrix of the prior distribution, respectively.

After we apply the Bayesian learning rule, the posterior distribution of w
is derived as follows:

p(w | D) ∝ p(w) p(D |w).

In this case, the posterior distribution takes a fairly complex form. Here,
let us explore how to use Laplace’s method to obtain a Gaussian approxi-
mation to this posterior distribution.
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If we take the logarithm of both sides, we obtain

Here, C is a constant, independent of w.

ln p(w | D) = C −
1
2
(w −w0)

ᵀΣ−1
0 (w −w0)

+

N∑
i=1

(
yi ln l(wᵀxi) + (1 − yi) ln

(
1 − l(wᵀxi)

) )
.

First of all, we need to maximize the posterior distribution to derive the
MAP estimation wMAP, which will define the mean of the Gaussian approx-
imation. There is no closed-form solution to derive the MAP estimation
from the posterior distribution. We need to compute the gradient asRecall that

1 − l(x) = l(−x)

d

dx
l(x) = l(x)

(
1 − l(x)

)
.

∇(w) = ∇ ln p(w | D) = −Σ−1
0

(
w −w0

)
+

N∑
i=1

(
yi − l(wᵀxi)

)
xi

and use a gradient-descent method to iteratively derive the MAP estima-
tion wMAP.

Furthermore, we may compute the Hessian matrix for the previous func-
tion as follows:

H(w) = ∇∇ ln p(w | D) = −Σ−1
0 −

N∑
i=1

l(wᵀxi)
(
1 − l(wᵀxi)

)
xix
ᵀ
i .

Finally, the Gaussian approximation to the posterior distribution of the
logistic regression takes the following form:

p(w | D) ≈N
(
w

�� wMAP,−H−1(wMAP)

)
.

This approximate Gaussian can be further used in Eq. (14.2) to derive an
approximate predictive distribution for Bayesian inference [151].

Laplace’s method is a convenient way to approximate the true posterior
distributions in Bayesian learning. However, it is only applicable to un-
constrained real-valued model parameters because the functional form
is restricted to be Gaussian. The next section introduces a more general
approximation strategy, which is based on the variational bound used in
the variational autoencoders (VAEs) described in Section 13.4.

14.3.2 Variational Bayesian (VB) Methods

In the VB method [247, 213, 109, 5], we aim to approximate the true
posterior distribution p(θ | D)with a so-called variational distribution q(θ)
from a family of tractable probability functions. The key idea is to search
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Figure 14.6: An illustration of the approx-
imation scheme in the mean field theory.
Top image: A two-dimensional (2D) Gaus-
sian with the covariance matrix Σ =

[
1 2
2 5

]
.

Middle image: The best-fit factorized 2D

Gaussian
[
σ2

1 0
0 σ2

2

]
is found by minimizing

the KL divergence. Bottom image: Both
distributions are plotted together to show
that the mean field theory may give a
rough approximation when two compo-
nents are strongly correlated.

for the best fit within the tractable family by minimizing the Kullback–
Leibler (KL) divergence between these two distributions:

q∗(θ) = arg min
q

KL
(
q(θ) ‖ p(θ | D)

)
.

Similar to the variational bound of the VAE , we rearrange the KL diver-
gence and represent it as follows [170]:

Substituting p(θ |D) = p(D,θ)
p(D) into

KL
(
q(θ) ‖ p(θ |D)

)
=

∫
θ
q(θ) ln

q(θ)

p(θ |D)
dθ

=

∫
θ
q(θ) ln p(D)dθ︸                   ︷︷                   ︸
= ln p(D)

−

∫
θ
q(θ) ln

p(D,θ)
q(θ)

dθ.KL
(
q(θ) ‖ p(θ | D)

)
= ln p(D) −

∫
θ

q(θ) ln
p(D, θ)

q(θ)
dθ︸                      ︷︷                      ︸

L(q)

,

where p(D) is the evidence of the data, and L(q) is also called the evidence
lower bound because it is a lower bound on the evidence. We can easily ver-
ify this equation by expanding all these terms (see margin note). Because
the evidence p(D) is independent of q(θ), we have the following:

min
q

KL
(
q(θ) ‖ p(θ | D)

)
⇐⇒ max

q
L(q).

In other words, we may instead look for the best-fit variational distri-
bution q∗(θ) by maximizing the evidence lower bound. As we will see,
under some conditions, we can even solve this maximization problem
analytically so as to derive the best-fit q∗(θ) explicitly.

An important condition under which this maximization problem can be
analytically solved is that the variational distribution q(θ) can be factorized
among various model parameters in θ. Assume we can partition all model
parameters in θ into some disjoint subsets θ = θ1 ∪ θ2 ∪ · · · ∪ θ I , and q(θ)
can be factorized accordingly as follows:

q(θ) = q1(θ1) q2(θ2) · · · qI (θ I ). (14.14)

Note that the true posterior distribution p(θ | D) usually cannot be factor-
ized in any way. However, we may choose to use any parameter partition
to factorize the variational distribution q(θ) in many different ways. Each
partition usually results in one particular approximation scheme. The
more we partition θ in Eq. (14.14), the easier it usually is to solve the
maximization problem. Meanwhile, this means we try to approximate
p(θ | D) from a more restricted family of probability functions. In practice,
we should partition θ in a proper way to ensure a good trade-off be-
tween approximation accuracy and the ease of solving the maximization
problem.

This factorization corresponds to the concept of mean field theory in physics
[40], where the effect of all other components on any given component
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is approximated by a single averaged effect. In doing so, the correlation
among these components is essentially ignored. As shown in Figure 14.6,
a joint distribution of two correlated Gaussian random variables is ap-
proximated by a factorized model of two independent Gaussian variables.
As we can see, the mean field theory is not always a good approximation
method, and it may provide a rough approximation if the correlation
between variables is strong.

If we substitute the previously factorized q(θ) in Eq. (14.14) into the evi-
dence lower bound L(q), we have

L(q) =
∫
θ

I∏
i=1

qi(θi)
[

ln p(D, θ) −
I∑

i=1

ln qi(θi)
]

dθ

=

∫
θ

I∏
i=1

qi(θi) ln p(D, θ)dθ −
I∑

i=1

∫
θi

qi(θi) ln qi(θi)dθi .

Let us consider maximizing L(q) w.r.t. each factor qi(θi) separately. For
any i = 1, 2, · · · , I, we have

max
qi

∫
θi

qi(θi)
[ ∫

θ j,i

∏
j,i

qj (θ j ) ln p(D, θ)dθ j,i
]

︸                                       ︷︷                                       ︸
E j,i

[
ln p(D,θ)

]
dθi −

∫
θi

qi(θi) ln qi(θi)dθi .

Using the expectation term Ej,i

[
ln p(D, θ)

]
, we can define a new distri-

bution for θi as follows:

p̃(θi ; D) ∝ exp
(
Ej,i

[
ln p(D, θ)

] )
.

Based on this new distribution, we can equivalently represent the maxi-
mization problem as follows:

Equivalently, we have

E j,i

[
ln p(D,θ)

]
= ln p̃(θi ; D) +C.

q∗i (θi) = arg max
qi

∫
θi

qi(θi) ln
p̃(θi ; D)
qi(θi)

dθi

=⇒ q∗i (θi) = arg min
qi

KL
(
qi(θi) ‖ p̃(θi ; D)

)
.

Because the KL divergence is nonnegative and it achieves the minimum
only when two distributions are identical, we can derive that

q∗i (θi) = p̃(θi ; D) ∝ exp
(
Ej,i

[
ln p(D, θ)

] )
. (14.15)

Or equivalently,

ln q∗i (θi) = Ej,i

[
ln p(D, θ)

]
+C, (14.16)

where C is a constant, independent of model parameters θi .
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We can repeat this process for all factors qi so as to derive the equations
for the optimal q∗i (θi) for all i = 1, 2, · · · , I. Unfortunately, these equations
will usually create circular dependencies among various partitions of
parameters so that no closed-form solution can be derived for the optimal
q∗(θ). In practice, we have to rely on some iterative methods for this. We
first randomly guess all qi and then compute Ej,i

[
ln p(D, θ)

]
based on the

initial qi . Next, all qi are updated using all computed Ej,i

[
ln p(D, θ)

]
, as

in Eq. (14.15). This process is repeated over and over. Like the normal EM
algorithm, it is guaranteed to converge to at least a local optimal point.

Interestingly enough, the variational Bayesian method does not assume
the functional form for a variational distribution q(θ), but any presumed
factorization form in Eq. (14.14) will automatically lead to some proper
functional forms for q(θ). This significantly differs from Laplace’s method,
which assumes Gaussians for the approximate distribution in the first
place.

Next, let us consider how to obtain the best-fit variational distribution
using an intriguing example, namely, Bayesian learning of GMMs.

Example 14.3.1 Variational Bayesian GMM

Assume a GMM is given as follows:

p(x | θ) =
M∑
m=1

wm ·N
(
x | µm,Σm

)
,

where θ =
{
wm, µm,Σm |m = 1, 2, · · · , M

}
denotes all parameters. After

observing a data sample x ∈ Rd , use the variational Bayesian method
to approximate the posterior distribution p(θ |x).

First of all, let’s follow the ideas in Examples 14.2.1 and 14.2.2 to specify
the prior distribution for all GMM parameters as

p(θ) = p(w1, · · · ,wM )

M∏
m=1

p(µm,Σm), (14.17)

with
p(w1, · · · ,wM ) = Dir(w1, · · · ,wM | α

(0)
1 , · · · ,α(0)M )

p(µm,Σm) = GIW
(
µm,Σm | ν

(0)
m ,Φ(0)m , λ(0)m , ν(0)m

)
,

where
{
α
(0)
m , ν(0)m ,Φ(0)m , λ(0)m , ν(0)m |m = 1, · · · , M

}
are the hyperparameters that

are preset based on our prior knowledge of the parameters θ.

Second, let us introduce a 1-of-M vector for x, denoted as z, to indicate
which mixture component x belongs to. Treating z as a latent variable, we
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can represent the joint distribution of the GMM as

p(x, z | θ) =
M∏
m=1

(
wm

)zm (
N(x | µm,Σm)

)zm
. (14.18)

The latent variable

z =
[
z1 z2 · · · zM

]
may take one of the following values:

[ 1 0 ··· 0 ]

[ 0 1 ··· 0 ]

...

[ 0 0 ··· 1 ]

Because the latent variable z and the model parameter θ are both unob-
served random variables, we treat them in the same way in the following
variational Bayesian method. We propose to use a variational distribution
q(z, θ) to approximate the posterior distribution p(z, θ |x). And we further
assume q(z, θ) is factorized as follows:

q(z, θ) = q(z)q(θ) = q(z) q(w1, · · · ,wM )

M∏
m=1

q(µm,Σm).

Here, we assume q(θ) is factorized in the
same way as the prior p(θ) in Eq. (14.17).

In the following, we will use Eq. (14.16) to derive the best-fit variational
distribution q∗(z, θ). Let us consider the first factor q∗(z):

ln q∗(z) = Eθ

[
ln p(x, z, θ)

]
+C = Eθ

[
ln p(θ) + ln p(x, z|θ)

]
+C.

Substituting Eq. (14.17) and Eq. (14.18) into the previous equation, we
have

ln q∗(z) =
M∑
m=1

zm

(
E

[
lnwm

]
−E

[ ln |Σm |
2

]
−E

[ (x − µm)
ᵀΣm

−1(x − µm)

2

]
︸                                                                      ︷︷                                                                      ︸

ln ρm

)
+C ′.

If we take the exponential of both sides, it yields

For all m = 1, 2, · · · , M :

ρm = exp
(
E

[
lnwm

]
−E

[ ln |Σm |

2

]

−E
[ (x − µm)

ᵀΣm
−1(x − µm)

2

] )
(14.19)

=⇒ rm =
ρm∑M

m=1 ρm
.

q∗(z) ∝
M∏
m=1

(
ρm

)zm ∝ M∏
m=1

(
rm

)zm ,

where rm =
ρm∑M

m=1 ρm
for all m. From this, we can recognize that q∗(z) is a

multinomial distribution, and the expectation for zm can be computed as
follows:

E
[
zm

]
= rm =

ρm∑M
m=1 ρm

(14.20)

Next, we consider the factor q∗(w1, · · · ,wM ) as

ln q∗(w1, · · · ,wM ) = Ez,µm ,Σm

[
ln p(θ) + ln p(x, z|θ)

]
=

M∑
m=1

(α
(0)
m − 1) lnwm +

M∑
m=1

rm lnwm +C.
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After taking the exponential of both sides and normalizing it properly, we
recognize that it is a Dirichlet distribution, as follows:

q∗(w1, · · · ,wM ) = Dir
(
w1, · · · ,wM | α

(1)
1 , · · · ,α(1)M

)
, (14.21)

where α(1)m = α
(0)
m + rm for all m = 1, 2, · · · , M .

Furthermore, we consider the factor q∗(µm,Σm) for each m as

ln q∗(µm,Σm) = Ez,wm

[
ln p(θ) + ln p(x, z|θ)

]
+C

= ln p(µm,Σm) +E
[
zm

]
lnN(x|µm,Σm) +C ′.

After substituting Eq. (14.20) and rearranging for µm and Σm, we can show
that q∗(µm,Σm) is also a GIW distribution:

q∗(µm,Σm) = GIW
(
µm,Σm | ν

(1)
m ,Φ(1)m , λ(1)m , ν(1)m

)
, (14.22)

with the updated hyperparameters given as follows:

λ
(1)
m = λ

(0)
m + rm

ν
(1)
m = ν

(0)
m + rm

ν(1)m =
λ
(0)
m ν(0)m + rmx

λ
(0)
m + rm

Φ
(1)
m = Φ

(0)
m +

λ(0)rm
λ
(0)
m + rm

(
x − ν(0)m

) (
x − ν(0)m

)ᵀ.
Finally, we will have to solve the circular dependencies because all of the
updating formulae make use of rm, which is in turn defined through ρm
in Eq. (14.19). Using the derived variational distributions in Eqs. (14.21)
and (14.22), we may compute these required expectations in Eq. (14.19) as
follows: Refer to the property of Dirichlet distri-

butions in Abramowitz and Stegun [1].
Here, ψ(·) denotes the digamma function.ln πm

∆
= E

[
lnwk

]
= ψ

(
α
(1)
m

)
− ψ

( M∑
m=1

α
(1)
m

)
ln Bm

∆
= E

[
ln

��Σm��] = d∑
i=1

ψ
(λm + 1 − i

2

)
− ln

��Φ(1)m ��
E

[
(x − µm)

ᵀΣm
−1(x − µm)

]
=

d

ν
(1)
m

+ λ
(1)
m (x − ν

(1)
m )
ᵀ (
Φ
(1)
m

)−1
(x − ν(1)m ).

Refer to the property of the inverse-Wishart
distributions in Appendix A and that of
the GIW distributions in Abramowitz and
Stegun [1].

Putting these back into Eq. (14.19) and normalizing to 1, we may derive
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Algorithm 14.19 Variational Bayesian GMMs

Input:
{
α
(0)
m , ν(0)m ,Φ(0)m , λ(0)m , ν(0)m |m = 1, · · · , M

}
set n = 0
while not converge do

E-step: use Eq. (14.23) to collect statistics:{
α
(n)
m , ν(n)m ,Φ(n)m , λ(n)m , ν(n)m

}
+ x −→

{
rm

}
M-step: use Eqs. (14.21) and (14.22) to update all hyperparameters:{

α
(n)
m , ν(n)m ,Φ(n)m , λ(n)m , ν(n)m

}
+

{
rm

}
+ x

−→
{
α
(n+1)
m , ν(n+1)

m ,Φ(n+1)
m , λ(n+1)

m , ν(n+1)
m

}
n = n + 1

end while

the updating formula for rm as follows:

rm ∝ πmB1/2
m exp

(
−

d

2ν(1)m

−
λ
(1)
m

2
(x − ν(1)m )ᵀ

(
Φ
(1)
m

)−1
(x − ν(1)m )

)
. (14.23)

In summary, we can use the EM-like algorithm shown in Algorithm 14.19
to iteratively update all hyperparameters to derive the best-fit variational
distribution for a GMM. In this algorithm, we first use the current hyper-
parameters to compute the statistics {rm} in the so-called E-step. Next,
the statistics {rm} are used to derive a new set of hyperparameters in the
M-step. This process repeats until it converges. �

14.4 Gaussian Processes

In the previous sections, we have discussed how to conduct Bayesian learn-
ing for parametric models, which belong to a family of presumed-form
probability functions with a fixed number of parameters. For parametric
models, as we have seen, Bayesian learning focuses on parameter esti-
mation, where our initial belief is encoded in a prior distribution of the
underlying model parameters, and the outcome of Bayesian learning is a
posterior distribution of the same model parameters.

In this section, we will discuss Bayesian learning for the so-called nonpara-
metric models, whose modeling capacity is not constrained by any fixed
number of parameters but can be dynamically adjusted along with the
amount of given data. These methods are normally called nonparametric
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Bayesian methods in the literature. The key idea behind all nonparamet-
ric Bayesian methods is to use some stochastic processes as conjugate
prior distributions for the underlying nonparametric models. For exam-
ple, Gaussian processes are used as prior distributions over all possible
nonlinear functions that can be used to fit the training data in a machine
learning problem, including both regression and classification [152, 196].
In addition, Dirichlet processes are used as prior distributions of all possible
discrete probability distributions for up to a countable infinite number of
categories, which can be used for clustering or density estimation [61, 169].

In the following, we will use Gaussian processes as an example to explore
the basic idea of nonparametric priors as well as the key steps in con-
ducting nonparametric Bayesian learning for regression and classification
problems.

14.4.1 Gaussian Processes as Nonparametric Priors

For all parametric models, we have to first choose a particular functional
form for the underlying distribution p(x|θ), such as Gaussian, logistic
regression, or mixture models. Each of these probability functions usually
involves a fixed number of parameters θ. Accordingly, in the Bayesian
setting, we just need to specify a prior distribution for these parameters
(i.e., p(θ)).

For nonparametric models, we do not specify any functional form for the
underlying model or its involved parameters. The first crucial question in
nonparametric Bayesian methods is how to specify a prior distribution for
some functions or models when we do not know their exact forms. The
answer here is to use some stochastic processes as nonparametric priors.
Among others, Gaussian processes are the most popular tool to specify
nonparametric prior distributions for a class of fairly powerful nonlinear
functions.

Assume we have an arbitrary function f (x)mapping an input feature in
Rd to a real value in R. If we use f (x) to evaluate any N points in Rd

(i.e., D =
{
x1, x2, · · · , xN

}
), their corresponding function values form an

N-dimensional real-valued vector, denoted as f =
[

f (x1) f (x2) · · · f (xN )
]ᵀ.

Despite that we do not know the exact form of the underlying function
f (x), if we know the vector f always follows a multivariate Gaussian
distribution as

f =
[

f (x1) f (x2) · · · f (xN )
]ᵀ
∼N

(
µD,ΣD

)
,

this may play a similar role as the prior distribution for f (x) because it
has implicitly imposed some constraints on the underlying function f (x).
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Figure 14.7: An illustration of many dif-
ferent nonparametric functions randomly
sampled from a given Gaussian pro-
cess. (Image credit: Cdipaolo96/CC-BY-
SA-4.0.)

Here, µD ∈ RN stands for the Gaussian mean vector, and ΣD ∈ RN×N

represents the covariance matrix. Both of them depend on the N chosen
data points in D. If this Gaussian constraint holds for any finite number of
points randomly chosen in Rd , we say that the underlying function f (x) is
a sample from a Gaussian process:

f (x) ∼ GP
(
m(x),Φ(x, x′)

)
,

where m(x) is called the mean function of the Gaussian process, which spec-
ifies the way to compute the Gaussian mean µD from any finite number of
data points in D. Similarly, Φ(x, x′) is called the covariance function, which
specifies the way to compute all elements in the covariance matrix ΣD

for any given D. If we randomly draw many samples from a Gaussian
process, we end up with many different functions, as shown in Figure
14.7. We do not even know the exact functional form for each of these
samples, but we do know that all of these functions follow a probability
distribution specified by the given Gaussian process.

It has been found that Gaussian processes are already powerful enough
to describe sufficiently complex functions even when we only specify a
proper covariance function. Therefore, in most cases, we normally use a
zero-mean function for simplicity (i.e., m(x) = 0). As for the covariance
function, we can choose any function Φ(x, x′) to compute each element
in ΣD as long as the resultant covariance matrix is positive definite. The
covariance matrix is an N × N symmetric matrix:

ΣD =

[
Σi j

]
N×N

,

where Σi j is used to denote the element located at the ith row and jth
column. As we know, it represents the covariance between f (xi) and f (xj ),
and we can assume that it is specified by the chosen covariance function
as follows:

Σi j = cov
(

f (xi), f (xj )

)
= Φ(xi , xj ).

As we may recall from the kernel functions in nonlinear support vector
machines (SVMs) in Section 6.5, Φ(xi , xj )must satisfy the Mercer condition
on page 124 to ensure the positive definiteness of ΣD. If a covariance
function is translation invariant, it is said to be stationary. A stationary
covariance function only depends on the difference between two points
(i.e., Φ(xi − xj )). In principle, any kernel function in Section 6.5 can be used
as the covariance function for Gaussian processes. In machine learning,
we often use the following radial basis function (RBF) kernel for the
covariance function:

Φ(xi , xj ) = σ
2 e−

‖xi−x j ‖
2

2l2 , (14.24)
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Figure 14.8: An illustration of some func-
tions randomly drawn from three Gaus-
sian processes with various hyperparam-
eters: (top) lower σ and high l; (middle)
high σ and high l; (bottom) lower σ and
lower l. (Courtesy of Zoubin Ghahramani
[79].)

regressionx y

where {σ2, l2} denote two hyperparameters: σ is called the vertical scale,
and l is called the horizontal scale. The vertical scale σ roughly describes
the dynamic range of the underlying functions, and the horizontal scale l
roughly describes the smoothness of the underlying functions. A high l
gives some relatively smooth functions, whereas a lower l results in some
wiggly functions. Figure 14.8 gives some examples of Gaussian processes
with different choices of these hyperparameters.

At last, let us consider why a Gaussian process can be used as a prior
distribution for those random functions whose exact forms and parameters
are unknown. The key here is that the prior distribution can be implicitly
computed based on any set D of N data points. When we apply any
randomly sampled function f (·) to all data points in D, we know that
their function values f follow a multivariate Gaussian distribution, as
specified in the definition of Gaussian processes. As a result, we can use
this Gaussian distribution to indirectly compute the prior distribution for
each underlying function as

p
(
f | D

)
=N

(
f | 0,ΣD

)
, (14.25)

where we use the zero-mean function and the covariance function in Eq.
(14.24) for the Gaussian process. As long as we know the two hyperpa-
rameters, we can explicitly compute the Gaussian distribution, which can
serve as a prior distribution for all nonparametric functions following this
distribution.

Next, we will continue to explore how to conduct Bayesian learning based
on this prior for two typical machine learning problems.

14.4.2 Gaussian Processes for Regression

In a regression problem, we aim to learn a model to map a feature vector
x ∈ Rd to an output y ∈ R. Here, we will use Gaussian processes to learn
a nonparametric function f (·) for this regression problem. We assume the
underlying function f (·) is a random sample from a Gaussian process and
that the function value is corrupted by an independent Gaussian noise to
yield the final output y:

f (x) ∼ GP
(
0,Φ(x, x′)

)
y = f (x) + ε , where ε ∼N(0,σ2

0 ).

Suppose that we are given some training samples of input–output pairs: all
input vectors are denoted as D =

{
x1, x2, · · · , xN

}
, and their corresponding

outputs are represented as a vector y =
[
y1 y2 · · · yN

]ᵀ. We first consider
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how to learn the parameters of this model, including the hyperparameters
of the covariance function Φ(x, x′) in Eq. (14.24) and the variance of the
residual noise ε .

Let us denote the function values of all input vectors in D as

f =
[

f (x1) · · · f (xN )
]ᵀ.

According to the nonparametric prior specified by the Gaussian process
in Eq. (14.25), we have

p
(
f | D

)
=N

(
f | 0,ΣD

)
.

Furthermore, because the residual noise ε follows a Gaussian distribution,
we have

p
(
y | f , D

)
=N

(
y | f,σ2

0 I
)
.

Putting them together, we can derive the marginal-likelihood function as
follows:

p
(
y | D

)
=

∫
f

p
(
y, f | D

)
df =

∫
f

p
(
y | f , D

)
p
(
f | D

)
df

=

∫
f
N

(
y | f,σ2

0 I
)
N

(
f | 0,ΣD

)
df

= N
(
y | 0,ΣD+ σ

2
0 I

)
=N

(
y | 0, CN

)
. (14.26)

We can see that this marginal-likelihood function is Gaussian, with a
zero-mean vector and an N × N covariance matrix, denoted as

CN = ΣD+ σ
2
0 I.

Furthermore, we can see that this marginal likelihood is a function of all
model parameters, including σ, l and σ0. Thus, we explicitly express it
as p

(
y | D,σ, l,σ0

)
. Based on the idea of maximum-marginal-likelihood

estimation, we can estimate all model parameters by maximizing the
marginal-likelihood function as follows:

{σ∗, l∗,σ∗0 } = arg max
σ,l,σ0

p
(
y | D,σ, l,σ0

)
= arg max

σ,l,σ0
lnN

(
y | 0, CN

)
.

For most choices of the covariance function, there is no closed-form so-
lution to solve the maximization problem. We normally have to rely on
some iterative gradient-descent methods to solve it because the gradients
w.r.t. all parameters can be easily derived (see margin note).

If we denote

l = lnN
(
y | 0, CN

)
= −

1
2

ln |CN | −
1
2

yᵀC−1
N y −

N

2
ln 2π

for any parameter θ, we can compute its
gradient as follows:

∂l

∂θ
= −

1
2

tr
(
C−1 ∂CN

∂θ

)
+

1
2

yᵀC−1
N

∂CN

∂θ
C−1

N y.
Once we have learned all model parameters as previously described, we
can use the Gaussian process model to predict the corresponding output ỹ
for any new input vector x̃. Following the same idea as in Eq. (14.26), we
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Figure 14.9: An illustration of the con-
ditional distribution of a Gaussian pro-
cess model. The shaded area shows the
range of all highly probable outputs for
each input, and the blue curve indi-
cates a point estimation. (Image credit:
Cdipaolo96/CC-BY-SA-4.0.)

can derive the marginal-likelihood function for all available data as

p
(
y, ỹ | D, x

)
=N

(
y, ỹ | 0, CN+1

)
,

where the covariance matrix CN+1 is an (N + 1) × (N + 1)matrix taking the
following format:

CN+1 =


CN k

kᵀ κ2


where κ2 = Φ(x̃, x̃) + σ2

0 , and each element in k is computed as ki =

Φ(xi , x̃).

Moreover, we can derive the following conditional distribution, which is
also Gaussian, for the final inference in regression:

p
(
ỹ | D, y, x̃

)
=

p
(
y, ỹ | D, x̃

)
p
(
y | D

) =N
(
ỹ
�� kᵀC−1

N y, κ2 − kᵀC−1
N k

)
. (14.27)

See Exercise Q14.9 for how to derive the conditional distribution in Eq.
(14.27). This conditional distribution specifies a probability distribution of
the output ỹ for each given input x̃. On some occasions, we prefer to use a
point estimation of ỹ for each input x̃, such as the conditional mean or the
MAP estimation. Because the conditional distribution is Gaussian, both
point estimates are the same, and they are given as follows:

E
[
ỹ
�� D, y, x̃

]
= ỹMAP = kᵀC−1

N y.

As shown in Figure 14.9, the shaded area highlights the range of all highly
probable outputs for each input x̃, and the blue curve indicates the point
estimation for each x̃.

Let us summarize the basic idea of nonparametric Bayesian learning.
Based on a set of input samples in D, we may represent the nonparametric
prior p( f |D) as in Eq. (14.25), which can be viewed as the Gaussian process
shown in the left part of Figure 14.10. After we observe all corresponding
function values in y, we may derive the conditional distribution in Eq.
(14.27), which can be viewed as a nonparametric posterior distribution
p( f |D, y) represented by another Gaussian process, as shown in the right
part of Figure 14.10. We can see that all nonparametric functions from
this Gaussian process are clamped on the observed samples because the
probability distribution in Eq. (14.27) is conditioned on all these input–
output pairs.
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Figure 14.10: An illustration of how the
nonparametric Bayesian learning updates
a nonparametric prior into a nonpara-
metric posterior, which are both repre-
sented by Gaussian processes. (Image
credit: Cdipaolo96/CC-BY-SA-4.0.)

classification
x y

As we have seen, all Gaussian process methods require us to invert an
N × N covariance matrix in either the training or the inference stage. This
operation is extremely expensive in computation because the complexity
of any exact algorithm is O(N3). This major drawback makes it impractical
to apply Gaussian processes to any large-scale tasks where N exceeds a
few hundreds of thousands.

14.4.3 Gaussian Processes for Classification

Gaussian processes can also be used for classification problems, where
output y is discrete. Because any nonparametric function drawn from a
Gaussian process yields an unconstrained real-valued output, we have to
introduce another function to map the real values into some probability-
like outputs for each class. Taking a binary-classification problem as an
example, where the output is binary as y ∈ {0, 1}, we may use the sigmoid
function l(·) in Eq. (6.12) for this purpose:

Pr
(
y = 1 | x

)
= l

(
f (x)

)
=

1
1 + e− f (x)

. (14.28)

This method is very similar to logistic regression, where f (x) is chosen as
a linear function wᵀx. However, in this case, we assume f (x) is a nonpara-
metric function randomly drawn from a Gaussian process as

f (x) ∼ GP
(
0,Φ(x, x′)

)
.

Suppose we have some training samples of input–output pairs: all input
vectors are denoted as D =

{
x1, x2, · · · , xN

}
, and their corresponding

binary outputs are represented as a vector y =
[
y1 y2 · · · yN

]ᵀ, where yi ∈
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{0, 1} for all i = 1, 2, · · · N . Assume we still use f to represent the function
values of all input vectors in D. We can still obtain the nonparametric
prior in Eq. (14.25), which is Gaussian.

In this case, we can represent the likelihood function as follows:

p(y | f , D) =
N∏
i=1

(
l
(
f (xi)

) )yi (
1 − l

(
f (xi)

) )1−yi
. (14.29)

After this, we can follow the same ideas in Eqs. (14.26) and (14.27) to
derive the marginal-likelihood function p(y | D) for model learning and
the conditional distribution p

(
ỹ | D, y, x̃

)
for inference. However, the major

difficulty here is that we cannot derive them analytically because the
likelihood function in Eq. (14.29) is non-Gaussian. In practice, we will
have to rely on some approximation methods. A common solution is to
use Laplace’s method, as described in Section 14.3, to approximate these
intractable distributions by some Gaussians. Interested readers may refer
to Williams and Barber [251] and Rasmussen and Williams [196] for more
details on Gaussian process classification.
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Exercises
Q14.1 Show the procedure to derive the updating formulae in Eqs. (14.7) and (14.8) for the mean νn and variance

τ2
n of Example 14.1.1.

Q14.2 Show the procedure to derive the following two steps in Bayesian learning of a multivariate Gaussian
model:

a. Completing the square:

N∑
i=1

(
xi − µ

)ᵀ
Σ−1 (xi − µ) = N∑

i=1

(
xi − x̄

)ᵀ
Σ−1 (xi − x̄

)
+ N(µ − x̄)ᵀΣ−1(µ − x̄),

with x̄ = 1
N

∑N
i=1 xi .

b.
∑N

i=1
(
xi − x̄

)ᵀ
Σ−1 (xi − x̄

)
= tr

( ( ∑N
i=1(xi − x̄)(xi − x̄)ᵀ

)
Σ−1

)
= tr

(
NSΣ−1

)
,

with S = 1
N

∑N
i=1(xi − x̄)(xi − x̄)ᵀ.

Q14.3 Consider a linear regression model from x ∈ Rn to y ∈ R: y = wᵀx + ε, where w ∈ Rn is the model
parameter, and ε is an independent zero-mean Gaussian noise ε ∼ N

(
0,σ2) . Assume we choose a

Gaussian distribution as the prior of the model parameter w: p(w) = N
(
w0,Σ0

)
. Assuming we have

obtained the training set D =
{
(x1, y1), (x2, y2), · · · , (xN , yN )

}
, derive the posterior distribution p(w|D),

and give the MAP estimation of the model parameter wMAP.

Q14.4 Use Laplace’s method to conduct Bayesian learning for the probit regression in Section 11.4.

Q14.5 Use Laplace’s method to conduct Bayesian learning for the log-linear models in Section 11.4.

Q14.6 Following the ideas in Example 14.3.1, derive a variational distribution for a multivariate Gaussian model
using the variational Bayesian method. Compare the derived variational distribution with the exact
posterior distribution in Example 14.2.2.

Q14.7 Assume we choose the same prior distribution for a GMM as in Example 14.3.1. Use the EM algorithm to
derive the MAP estimation for GMMs:

a. Give the formulae to update all GMM parameters θMAP iteratively.
b. If we approximate the true posterior distribution of a GMM p(θ |x) by another approximate distribu-

tion q̃(θ) as
q̃(θ) ∝ p(θ)Q(θ |θMAP),

where Q(·) is the auxiliary function in the EM algorithm, derive this approximate posterior distribu-
tion q̃(θ), and compare it with the variational distribution q(θ) in Example 14.3.1.

Q14.8 Following the ideas in Example 14.3.1, derive the variational Bayesian learning procedure for the Gaussian
mixture hidden Markov models (HMMs) in Section 12.4, as shown in Figure 12.15.

Q14.9 Show the procedure to derive the conditional distribution in Eq. (14.27).

Q14.10 Derive Laplace’s method for a Gaussian process in binary classification.

Q14.11 Replace the sigmoid function in Eq. (14.28) with a softmax function, and formulate a Gaussian process for
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a multiclass pattern-classification problem.





Figure 15.1: An illustration of a directed
link between two random variables in a
Bayesian network.
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This chapter introduces a pictorial representation for generative models,
normally called graphical models [118, 22, 13] in the literature. Graphical
models aim to represent generative models with some graphs consisting
of nodes and arcs. As we will see, graphical models are a very flexible way
to visually represent generative models. The graphical representation can
intuitively display inherent dependencies among all underlying variables
in a generative model and also help to develop some generic graph-based
inference algorithms for generative models. Moreover, a graphical repre-
sentation is also very useful in analyzing different types of relationships
among random variables, such as correlation, causality, and mediation.
The following discussion will first introduce some basic concepts of graph-
ical models and then present two different types of graphical models,
namely, directed graphical models and undirected graphical models, along with
some representative models from each category as case studies.

15.1 Concepts of Graphical Models

As we have seen, a generative model essentially represents a probabilistic
distribution of some random variables. The idea behind the graphical
representation for generative models is simple: we use each node to repre-
sent a random variable in generative models and each link to express a
probabilistic relationship between random variables. The links between
the nodes can be either directed or undirected. If we use all directed links,
each generative model ends up with a directed acyclic graph, and each
directed link represents a conditional distribution between the linked ran-
dom variables. For example, if there exists a directed link from a random
variable x to another y, it is said that x is a parent of y, and this link es-
sentially represents a conditional distribution p(y |x); see Figure 15.1. The
graphical models using all directed links are called directed graphical models,
also known as Bayesian networks in the literature [181, 113, 182]. In general,
each directed graphical model represents one particular way to factorize
the joint distribution of all underlying random variables:

p(x1, x2, · · · , xN ) =
N∏
i=1

p
(
xi | pa(xi)

)
,

where pa(xi) denotes all parents of xi in the graph.
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Figure 15.2: An illustration of a fully con-
nected Bayesian network to represent a
joint distribution of five random vari-
ables, p(x1, x2, x3, x4, x5).

Figure 15.3: An illustration of a sparsely
connected Bayesian network to represent
a joint distribution of seven random vari-
ables, p(x1, x2, x3, x4, x5, x6, x7). (Source:
Bishop [22].)

On the other hand, if we use all undirected links to connect random
variables, each undirected link just represents some mutual dependency
between the variables because the conditioning is not explicitly shown as
a result of the undirectedness of the link. The graphical models using all
undirected links are called undirected graphical models or Markov random
fields [128, 203]. As we will see, directed and undirected graphical models
require different treatments in the formulation, but they are closely related
and complementary in machine learning.

Let’s first take a simple directed graphical model as an example, where
we use a Bayesian network to graphically represent a generative model
of five random variables (i.e., p(x1, x2, x3, x4, x5)). If we do not make any
assumption on this joint distribution, we can still factorize it according to
the product rule in probability, as follows:

p(x1, x2, x3, x4, x5)

= p(x1) · p(x2 |x1) · p(x3 |x1, x2) · p(x4 |x1, x2, x3) · p(x5 |x1, x2, x3, x4).

If we use a node to represent each variable and use some directed links to
properly represent all of the conditional distributions, we end up with a
fully connected graph, as shown in Figure 15.2. However, a fully connected
graphical model is not particularly interesting because it does not provide
extra information or any convenience beyond the algebraic representation
of p(x1, x2, x3, x4, x5). A fully connected graphical model simply means
that all underlying variables are mutually dependent, and there are no
possible independence implications among the variables that could be
further explored to simplify the computation of such a model.

In fact, all sensible generative models used in practice can usually be
represented by a sparsely connected graphical model, where many links
are missing between some nodes in the graph. These missing links indi-
cate certain independence implications among the variables. If we can
explore them properly, it will significantly simplify the computation of the
underlying generative models. For example, given the generative model
of seven random variables, p(x1, x2, x3, x4, x5, x6, x7), that is represented by
a Bayesian network in Figure 15.3, we can easily identify that this is not a
fully connected graph because there are many missing links between some
nodes. Based on the previous definition of a directed graphical model, we
can factorize the joint distribution based on all directed links in Figure
15.3 as follows:

p(x1, x2, x3, x4, x5, x6, x7)

= p(x1)p(x2)p(x3)p(x4 |x1, x2, x3)p(x5 |x1, x3)p(x6 |x4)p(x7 |x4, x5),

where p(x1), p(x2), and p(x3) have no conditions because these nodes do
not have any parent nodes, and we write p(x4 |x1, x2, x3) because the node
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Figure 15.4: An illustration of a condi-
tional distribution p(x |y) between two
discrete random variables.

x4 has three parent nodes, and so on. When we compare the two Bayesian
networks in Figures 15.2 and 15.3, we can see that the sparse structure in
Figure 15.3 suggests one particular way to factorize the joint distribution
as previously done. If we take advantage of this factorization, it will
dramatically simplify the computation over the generic method using the
product rule. Moreover, this sparse structure also suggests some potential
independence implications among the underlying random variables. We
will come back to this topic and discuss how to identify them in the next
section.

Here, let us discuss how to choose all conditional distributions for a
Bayesian network. Generally speaking, we normally prefer to choose a
relatively simple model for each conditional distribution in Bayesian net-
works, for example, an e-family distribution. If we choose an e-family
distribution for each conditional distribution in a Bayesian network, we
can see that the joint distribution of all random variables also belongs to
the e-family because it is a product of many e-family distributions. Fur-
thermore, if the random variables in a Bayesian network are continuous,
we normally assume their conditional distributions are Gaussian mod-
els with different mean and covariance parameters. This choice leads to
the so-called Gaussian Bayesian networks, which are basically complicated
versions of the linear Gaussian models we discussed in Section 13.2.

Refer to Section 12.1 for the definition of
the e-family distributions.

The 1-of-M vector x takes one of the fol-
lowing M different values:

[ 1 0 ··· 0 ]

[ 0 1 ··· 0 ]

...

[ 0 0 ··· 1 ]

In this chapter, we will focus more on Bayesian networks of all discrete
random variables. Assume that x is a discrete random variable taking M
distinct values. For notation convenience, we usually use a 1-of-M vector x
to encode this random variable, denoted as x =

[
x1 x2 · · · xM

]ᵀ (see margin
note). Similarly, for another discrete random variable y taking N distinct
values, we can use another 1-of-N vector y =

[
y1 y2 · · · yN

]ᵀ to represent
it. In this case, a conditional distribution p(x |y) can be represented by the
M × N table shown in Figure 15.4, where each element µi j (1 ≤ i ≤ M and
1 ≤ j ≤ N) denotes a conditional probability, as follows:

µi j
∆
= Pr(x = i

�� y = j) = Pr(xi = 1
�� yj = 1),

where xi denotes the ith element of the 1-of-M vector x and yj for the
jth element of y. We can quickly recognize that each column of the table
forms a multinomial distribution, and it satisfies the sum-to-1 constraint:∑M

i=1 µi j = 1 for all j = 1, 2, · · · , N . Using this notation, we can conveniently
represent the conditional distribution as follows:

p(x | y) = p(x | y) =
M∏
i=1

N∏
j=1

µ
xiyj
i j .

Similarly, we can extend the previous notation to conditional distributions
involving more discrete random variables. For example, p(x | y, z) can
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Figure 15.5: An illustration of a con-
ditional distribution p(x |y, z) involving
three discrete random variables.

Figure 15.6: Two basic patterns involving
two variables in a Bayesian network:
1. x and y are independent.
2. x and y are causal.

be encoded in a three-dimensional (3D) table, as shown in Figure 15.5,
denoted as

{
µi jk

}
. Therefore, we can represent this conditional distribution

as

p(x | y, z) = p(x | y, z) =
M∏
i=1

N∏
j=1

K∏
k=1

µ
xiyj zk
i jk

.

It is easy to verify that the conditional
distribution p(x1 | x2, x3, x4) can be repre-
sented as a four-dimensional (4D) table{
µi jkl

}
, and so on.

On the other hand, an unconditional probability distribution p(x) can be
encoded in a one-dimensional (1D) table, denoted as

{
µi

}
. Therefore, we

have

p(x) = p(x) =
M∏
i=1

µxii .

Finally, regarding how to formulate the joint distributions for undirected
graphical models, we will consider this topic in Section 15.3.

15.2 Bayesian Networks

This section continues the discussion of several topics related to Bayesian
networks, including how to interpret conditional dependencies in Bayesian
networks, how to use Bayesian networks to represent generative models,
and how to learn and make inferences for Bayesian networks.

15.2.1 Conditional Independence

Before we consider any general rules for identifying independence impli-
cations in Bayesian networks, let us discuss some basic junction patterns
commonly used in Bayesian networks.

We first start with two simple networks of only two random variables.
As shown in the left half of Figure 15.6, if two random variables x and y

are not connected, they are statistically independent because of the implied
factorization p(x, y) = p(x)p(y), which is normally denoted as x ⊥ y. This
can be extended to any disconnected random variables in a Bayesian
network. If two random variables are not connected by any paths, we can
immediately claim that they are independent. On the other hand, as shown
in the right half of Figure 15.6, if two variables x and y are connected by a
directed link from y to x, representing a conditional distribution p(x |y), it
indicates that they are mutually dependent. In a regular Bayesian network,
the direction of a link is not critical because we can flip the direction
of the link into "from x to y" by representing the reverse conditional
distribution p(y |x) = p(y)p(x |y)

p(x) . In this case, either directed link leads to a
valid Bayesian network, and they actually represent the same generative
model. However, in some cases, we prefer to use the direction of the links
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Figure 15.7: An illustration of how a con-
founding variable z affects the relation of
its two different effects x and y in a so-
called fork junction pattern, x ← z → y.

to indicate the causal relation between two random variables; this results
in a special type of Bayesian network, normally called a causal Bayesian
network [184]. In a causal Bayesian network, a directed link from y to x
indicates that the random variable x causally depends on y. In other words,
it means that y is the cause and x is the effect in the physical interaction
between these two variables. Note that the causation cannot be learned
only from the data distribution, and it normally requires extra information
on the physical process to correctly specify the direction of links in causal
Bayesian networks [183, 186].

Next, we will continue to consider some basic junction patterns involving
three variables in causal Bayesian networks. Assume that we focus on two
variables x and y; let us investigate how a third variable z may affect their
relationship in the following three different cases.

Confounding

As shown in Figure 15.7, in a so-called fork junction pattern, x ← z → y,
random variables x and y have a common cause variable z, which is
commonly called a confounder. In this fork junction, we can factorize the
joint distribution as follows:

p(x, y, z) = p(z) · p(x |z) · p(y |z). (15.1)

In this case, it is easy to show that the confounder z causes a spurious
association between x and y because they are not independent, as implied
by p(x, y) , p(x)p(y) (see margin note), usually denoted as From Eq. (15.1), we can compute the marginal

distributions p(x), p(y), and p(x, y) sepa-
rately. It is easy to verify:

p(x, y) =
∑
z

p(z)p(x |z)p(y |z)

, p(x)p(y).

x 6⊥ y.

x 6⊥ y ⇐⇒ p(x, y) , p(x) p(y).

However, once the confounder z is given, x and y become independent
under this condition. This can be easily proved because we can derive
p(x, y | z) = p(x |z)p(y |z) from the confounding factorization in Eq. (15.1)
(see margin note). In this case, it is said that x and y are conditionally
independent given z, denoted as x ⊥ y

�� z:

For the confounding in Eq. (15.1), we have

p(x, y | z) =
p(x, y, z)
p(z)

= ��p(z)p(x |z)p(y |z)

��p(z)
= p(x |z)p(y |z).

x ⊥ y
�� z ⇐⇒ p(x, y | z) = p(x |z) p(y |z).

As we know, a confounder causes some spurious association (or corre-
lation) between two random variables, and even worse, the underlying
confounders are often hidden in practice. As a result, we often misinterpret
the spurious association due to some hidden confounders as the direct
causation between the observed variables. This is a common mistake in
data analysis. For example, it has been observed that when the number
of people who drown in swimming pools in a region goes up, ice-cream
sales tend to jump in the same region. Of course, we should not draw
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Figure 15.8: An illustration of how a
hidden confounder associates two inde-
pendent effect variables, where the two
shaded variables are observed, but the
confounder is often not observed.

Figure 15.9: An illustration of how a me-
diator z affects the relation of two vari-
ables x and y in a so-called chain junction
pattern, x → z → y.

Figure 15.10: An illustration of how a me-
diator variable may associate two random
variables. The two shaded variables are
observed.

the absurd conclusion that eating ice cream causes drowning in swim-
ming pools. The correct interpretation is that these two variables are not
causal but indirectly associated by some hidden confounder(s), such as hot
weather, as shown in Figure 15.8. When the weather becomes hot, more
people want to eat ice cream, and meanwhile, more people go swimming.
More drowning accidents are caused by the hot weather rather than eating
ice cream. On the other hand, if we only look at the data from some hot
days (or some cool days), we can quickly realize that ice-cream sales and
drowning deaths are in fact independent. This is the so-called conditional
independence we have discussed.

Chain

As shown in Figure 15.9, in a chain junction pattern, x → z → y, the
variable z is called a mediator that transmits the effect of x to y. In a chain
junction, we can factorize the joint distribution as follows:

p(x, y, z) = p(x) · p(z |x) · p(y |z). (15.2)

Similar to confounders, a mediator z also creates a spurious association
between x and y because we can easily verify that x and y are not indepen-
dent from the chain factorization in Eq. (15.2) (see margin note). In other
words, we havep(x, y) =

∑
z

p(x)p(z |x)p(y |z)

= p(x)
∑
z

p(z |x)p(y |z) , p(x)p(y). x 6⊥ y ⇐⇒ p(x, y) , p(x)p(y).

However, if the mediator z is given (or controlled), it blocks information
from x to y, and vice versa. This is true because we can derive the following
conditional independence from Eq. (15.2) (see margin note) as follows:p(x, y | z) =

p(x, y, z)
p(z)

=
p(x)p(z |x)p(y |z)

p(z)

=
p(x, z)p(y |z)

p(z)

= p(x |z)p(y |z).

x ⊥ y
�� z ⇐⇒ p(x, y | z) = p(x |z)p(y |z).

A mediator can also create a spurious association between two observed
variables. In practice, relying on common sense or our intuition, it is
usually much easier to identify the spurious association caused by a
mediator than that caused by a confounder. For example, as shown in
Figure 15.10, if someone feels hungry, he may start to cook food. When
he is cooking, he may cut his fingers. From this observation, obviously,
few people will draw the conclusion that hunger causes cutting of the
fingers. However, if we control the mediator, the two observed variables
become independent. If you do not cook, no matter how hungry you are,
you will not cut your fingers. On the other hand, as long as you cook, you
may cut your fingers, no matter whether you are hungry or not. This is
the conditional independence similar to the confounding cases.
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Figure 15.11: An illustration of how a col-
lider z (common effect) affects the rela-
tion of its two independent causes x and
y in a so-called colliding junction pattern,
x → z ← y.

Figure 15.12: An illustration of the
explain-away phenomenon, where a com-
mon effect may be caused by two inde-
pendent causes.
R: It was raining.
L: The water pipe was leaking.
W : The driveway is wet.

Colliding

As shown in Figure 15.11, in a so-called colliding junction pattern, x →
z ← y, two random variables x and y have a common effect z, which is
usually called a collider. In a colliding junction, we can factorize the joint
distribution as follows:

p(x, y, z) = p(x) · p(y) · p(z | x, y). (15.3)

Interestingly enough, under this colliding factorization, we can easily
show that x and y are actually independent because we can prove that
p(x, y) = p(x)p(y) (see margin note). Therefore, we have

p(x, y) =
∑
z

p(x, y, z)

=
∑
z

p(x)p(y)p(z |x, y)

= p(x)p(y)
∑
z

p(z |x, y) = p(x)p(y).

x ⊥ y ⇐⇒ p(x, y) = p(x)p(y).

On the other hand, once the collider z is given, x and y are not independent
anymore because we can show that p(x, y | z) , p(x |z)p(y |z) holds for the
colliding junction (see margin note), which is normally denoted as follows:

p(x, y |z) =
p(x, y, z)
p(z)

=
p(x)p(y)p(z |x, y)

p(z)

, p(x |z)p(y |z).

x 6⊥ y
�� z ⇐⇒ p(x, y | z) , p(x |z)p(y |z).

An interesting phenomenon in machine learning, called explain away, is
attributed to the colliding junction. Assuming there exists a common
effect (collider) z that may be caused by two independent causes x or y,
if we only observe z, we know it may be caused by either x or y or both.
However, if we observe z and also know one cause x happens, this will
explain away the other cause y. In other words, the conditional probability
of y given both z and x is always smaller than that of y given only z. Let
us use a simple example to further explain this interesting phenomenon
of explain away.

Example 15.2.1 Explain Away

As shown in Figure 15.12, a wet driveway (W) may be caused by two
independent reasons: (1) it was raining (R), or (2) the water pipe was
leaking (L). Show how the observation of one cause, L, can explain
away the other cause, R.

Let us assume that the three random variables in Figure 15.12 are all
binary (yes/no) (i.e., R, L, W ∈ {0, 1}). We further assume all conditional
distributions are given as follows:

Obviously, we have

Pr(R = 0) = 1 − Pr(R = 1) = 0.9

Pr(L = 0) = 1 − Pr(L = 1) = 0.99

Pr(W = 0 | R = 1, L = 1)

= 1 − Pr(W = 1 | R = 1, L = 1)

= 0.10,

and so on.

Pr(R = 1) = 0.1 Pr(L = 1) = 0.01

Pr(W = 1 | R = 1, L = 1) = 0.90 Pr(W = 1 | R = 1, L = 0) = 0.80

Pr(W = 1 | R = 0, L = 1) = 0.50 Pr(W = 1 | R = 0, L = 0) = 0.20.
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Figure 15.13: An simple example to
explain the d-separation rule. (Source:
Bishop [22].)

First of all, before we observe anything, the prior probability of raining is
given as Pr(R = 1) = 0.1.

Second, assume we have observed that the driveway is wet (i.e., W = 1).
Let us compute the conditional probability of raining (see margin note):

Pr(R = 1 |W = 1) =
Pr(W = 1, R = 1)

Pr(W = 1)
= 0.3048.

As we can see, the observation of the effect (W = 1) significantly increases
the probability of any possible cause. The probability that it was raining
has gone up from 0.1 to 0.3048.

Pr(W = 1, R = 1) =

Pr(W=1,L=1,R=1)+Pr(W=1,L=0,R=1)

= 0.1 × 0.01 × 0.9 + 0.99 × 0.1 × 0.8

= 0.0801.

Pr(W = 1, R = 0) =

Pr(W=1,L=1,R=0)+Pr(W=1,L=0,R=0)

= 0.01 × 0.9 × 0.5 + 0.99 × 0.9 × 0.2

= 0.1827.

Pr(W = 1) =

Pr(W = 1, R = 1) + Pr(W = 1, R = 0)

= 0.2628.

Third, assume that after we have observed that the driveway is wet, we
have also found out that the water pipe was leaking (L = 1). Let us
compute the conditional probability of raining in this case, as follows:

Pr(W = 1, L = 1) =

Pr(W=1,L=1,R=1)+Pr(W=1,L=1,R=0)

= 0.1 × 0.01 × 0.9 + 0.9 × 0.01 × 0.5

= 0.0054.

Pr(R = 1 |W = 1, L = 1) =
Pr(W = 1, L = 1, R = 1)

Pr(W = 1, L = 1)
= 0.1667.

This shows that after we know that the water pipe was leaking (one cause),
the probability of raining (another cause) is largely reduced from 0.3048
to 0.1667. In other words, the observation of one cause has significantly
explained away the possibility of all other independent causes, whereas
normally, these two factors (raining and leaking water pipe) are totally
independent. �

Finally, we can extend the previous discussion of conditional indepen-
dence from three simple cases into more general Bayesian networks so as
to derive the famous d-separation rule [182]. Generally speaking, given any
three disjoint subsets of variables A, B and C, for any path from A to B in
a Bayesian network, we say that the path is blocked by C if the following
two conditions hold at the same time:

1. All confounders and mediators along the path belong to C.
2. Neither any collider nor any of its descendants belongs to C.

If all paths from A to B are blocked by C, it is said that A and B are
d-separated by C, denoted as A ⊥ B

�� C. In other words, any random
variables in A are conditionally independent from all variables in B given
all variables in C. Otherwise, if any path is not blocked, A and B are not
conditionally independent given C, denoted as A 6⊥ B

�� C.

For example, given the simple causal Bayesian network in Figure 15.13,
after we apply the d-separation rule to it, we can verify the following:

a 6⊥ f
�� c a 6⊥ b

�� c

a 6⊥ c
�� f a ⊥ b

�� f e ⊥ b
�� f .
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Figure 15.14: Representing Gaussian
models as a Bayesian network for N i.i.d.
data samples. The observed random vari-
ables are represented with shaded nodes.

Figure 15.15: Using the plate notation to
represent Gaussian models as a Bayesian
network for N i.i.d. data samples.

Figure 15.16: Using a Bayesian network
to represent the Bayesian learning of
Gaussian models (with a known covari-
ance matrix) with N i.i.d. data samples.
The observed variables are represented
by shaded nodes and latent variables by
unshaded nodes.

15.2.2 Representing Generative Models as Bayesian
Networks

An important use of graphical models in machine learning is to intuitively
represent many generative models with a graphical representation to
explicitly display the underlying dependency structure of various random
variables. In the following, we will discuss how to represent some popular
generative models as Bayesian networks. Remember that the basic rule in
a Bayesian network is that we use a node to represent a random variable
and a directed link for a conditional distribution between some variables.
Note that some random variables are labeled as "observed," and the others
as "missing," which are treated as latent variables. We have to explicitly
differentiate these two types of nodes in a Bayesian network.

Let us start with multivariate Gaussian models. As shown in Figure 15.14,
a Gaussian model can be represented by a Bayesian network of some dis-
connected nodes, each of which stands for an independent and identically
distributed (i.i.d.) data sample xi . All nodes are shaded in blue to indicate
that they all represent some observed random variables. Each node repre-
sents a distribution specified by the Gaussian model as p(xi) =N(xi | µ, Σ)
for all i = 1, 2, · · · , N . In practice, we usually adopt the compact plate
notation shown in Figure 15.15 to simplify the Bayesian network in Figure
15.14. In this case, the plate notation represents a repetition of N copies of
the same network structure.

Furthermore, we can also use the Bayesian network shown in Figure 15.16
to represent the Bayesian learning of a Gaussian model with a known
covariance matrix Σ0. As we know, all unknown model parameters are
treated as random variables in Bayesian learning. Therefore, we have to
add a new node to represent the unknown Gaussian mean vector µ, and
this node is not shaded to indicate that it is unobserved in the Bayesian
learning, so we will have to treat the Gaussian mean as a latent variable. In
this Bayesian network, the prior distribution p(µ) is specified for the node
of µ. The directed link represents the conditional distribution p(xi | µ) =
N(xi | µ, Σ0). Based on the rule of Bayesian networks, this structure implies
the following way to factorize the joint distribution:

p(µ, x1, · · · xN ) = p(µ)
N∏
i=1

p(xi |µ).

We can verify that this factorization is identical to the Bayesian learning
rule in Eq. (14.1).

Next, let us consider how to use a Bayesian network to represent a Gaus-
sian mixture model (GMM) of M Gaussian components. For each data
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Figure 15.17: An illustration of a Bayesian
network to represent a GMM of M Gaus-
sian mixture components.

Figure 15.18: An illustration of a Bayesian
network to represent the Bayesian learn-
ing of the GMM of M Gaussian mixture
components in Example 14.3.1.

sample xi , we introduce a 1-of-M latent variable zi to indicate which com-
ponent xi belongs to. Each zi can take one of M distinct values. We can
represent the GMM for N i.i.d. data samples with the Bayesian network
shown in Figure 15.17. We use an unshaded node to represent each latent
variable zi . Furthermore, we can specify a distribution for each node of zi
as follows:

The latent variable

zi =
[
zi1 zi2 · · · ziM

]
may take one of the following values:

[ 1 0 ··· 0 ]

[ 0 1 ··· 0 ]

...

[ 0 0 ··· 1 ]

p(zi) =
M∏
m=1

(
wm

)zim ,

where wm denotes the mixture weight of the mth Gaussian component.
Moreover, the directed link represents the following conditional distribu-
tion:

p(xi | zi) =
M∏
m=1

(
N(xi | µm, Σm)

)zim
,

where N(µm, Σm) denotes the mth Gaussian component. The model struc-
ture in Figure 15.17 indicates the following factorization for the joint
distribution:

p(x1, · · · , xN , z1, · · · , zN ) =

N∏
i=1

p(zi)p(xi |zi).

If we marginalize out all latent variables {z1, · · · , zN }, we derive the fol-
lowing marginal distribution of all data samples:

p(x1, · · · , xN ) =

N∏
i=1

(∑
zi

p(zi)p(xi |zi)︸               ︷︷               ︸
p(xi )

)
.

Considering that each zi takes only M distinct values. as described previ-
ously, we can verify that this p(xi) is identical to the original definition of
GMMs in Eq. (12.6).

Furthermore, we can extend the graphical representation for the Bayesian
learning of GMMs discussed in Example 14.3.1. In this case, we need to
add some unshaded nodes to represent all GMM parameters: a vector of
all mixture weights as w = [w1 · · · wM ]

ᵀ and all Gaussian mean vectors
and covariance matrices {µm, Σm}. If we specify the dependency among
all random variable as shown in Figure 15.18 and choose the following
conditional distributions for all directed links:

p(w) = Dir(w
�� α(0))

p(zi |w) =
M∏
m=1

(
wm

)zim ∀i = 1, 2, · · · N
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Figure 15.19: An illustration of Bayesian
networks to represent Markov chain mod-
els for a sequence:
1. First-order Markov chain
2. Second-order Markov chain

Figure 15.20: An illustration of Bayesian
networks to represent HMMs for a se-
quence of {x1, · · · , xT }.

p
(
Σm

)
= W−1 (

Σm
��Φ(0)m , ν(0)m

)
∀m = 1, 2, · · ·M

p(µm

�� Σm) =N
(
µm

�� ν(0)m ,
1

λ
(0)
m

Σm

)
∀m = 1, 2, · · ·M

p
(
xi

�� zi , {µm, Σm}
)
=

M∏
m=1

(
N(xi

�� µm, Σm)
)zim

∀i = 1, 2, · · · N ,

then we can verify that these specifications lead to exactly the same for-
mulation as in Example 14.3.1.

Along the same line of thought, we can represent the Markov chain mod-
els discussed in Section 11.3 for any sequence {x1, x2, x3, x4 · · · } with the
Bayesian networks shown in Figure 15.19. In a first-order Markov chain
model, each state only depends on its previous state as p(xi |xi−1), which
is represented by a directed link from one observation to the next. In a
second-order Markov chain model, each state depends on the two preced-
ing states as p(xi |xi−1, xi−2), which is reflected by the directed links from
two parent nodes. As we can see, there are no latent variables in Markov
chain models.

On the other hand, the hidden Markov models (HMMs) discussed in
Section 12.4 can be represented by the Bayesian network shown in Figure
15.20 for an observation sequence {x1, x2 · · · , xT }. Here, we introduce all
corresponding Markov states st as latent variables for all t = 1, 2, · · · , T .
As in the definition of HMMs, each observation xt only depends on the
current Markov state st , which in turn depends on the previous state st−1.
The model structure in Figure 15.20 suggests the following factorization
for the joint distribution:

p(s1, · · · , sT , x1, · · · , xT ) = p(s1)p(x1 |s1)

T∏
t=2

p(st |st−1)p(xt |st ).

If we marginalize out all latent variables {s1, · · · , sT }, we can derive the
following marginal distribution for all observations:

p(x1, · · · , xT ) =
∑

s1,· · · ,sT

p(s1, · · · , sT , x1, · · · , xT ).

This computation results in the same formulation in Eq. (12.15) as the
original definition of HMMs in Section 12.4.

15.2.3 Learning Bayesian Networks

As we have seen, Bayesian networks are a flexible graphical representation
for a variety of generative models. An interesting question is how we can
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automatically learn Bayesian networks from available training data. This
learning problem usually includes two different parts:

1. Structure learning
In structure learning, we need to answer some questions related to
the graph structure. For example, how many latent variables are
actually involved? Which random variables in a model are linked,
and which variables are not? How do we determine the direction
of the links for those connected nodes? Unfortunately, structure
learning is largely an open problem in machine learning. The model
structure relies much on the underlying data-generation mechanism,
and it is generally believed that the data distribution alone does
not provide enough information to infer the correct model structure.
For a given data distribution, we often can come up with a vast
number of differently structured models that yield the same data
distribution (see Exercises Q15.1 and Q15.2). In practice, the model
structure has to be manually specified based on the understanding
of the given data, as well as some general assumptions about the
physical data-generation process.

2. Parameter estimation
How do we learn the conditional distributions for all directed links
in a given model structure? Assuming that all random variables are
discrete, these conditional distributions are essentially many differ-
ent multinomial distributions. In this case, this step reduces to a
parameter-estimation problem, that is, how to estimate all parame-
ters in these multinomial distributions. In contrast, parameter estima-
tion is a well-solved problem in machine learning. As we have seen
in the previous chapters, unknown parameters can be estimated by
optimizing various objective functions, such as maximum-likelihood
estimation (MLE) or maximum a posteriori (MAP) estimation.

Once the structure is specified, a Bayesian network usually represents a
particular way to factorize the joint distribution of many different random
variables:

pθ(x1, x2, x3, · · · ),

where θ denotes all unknown parameters.

If we can observe all random variables in the joint distribution, the pa-
rameter estimation is actually a fairly simple problem. Assume we have
collected a training set of many samples of these random variables as
follows:{(

x(1)1 , x(1)2 , x(1)3 , · · ·
)
,
(
x(2)1 , x(2)2 , x(2)3 , · · ·

)
, · · ·

(
x(i)1 , x(i)2 , x(i)3 , · · ·

)
, · · ·

}
.

As we have seen, the unknown model parameter θ can be estimated by
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maximizing the following log-likelihood function:

l(θ) =
∑
i

ln pθ(x
(i)
1 , x(i)2 , x(i)3 , · · · ).

After we factorize the joint distribution, it results in some simple expres-
sions because the logarithm can be directly applied to each conditional
distribution, which is usually assumed to belong to the e-family. In this
case, we normally can derive a closed-form solution to the MLE for all
unknown parameters θ, such as the Markov chain models in Section
11.3.

In many other cases where the underlying model contains some latent
variables, we cannot fully observe all random variables in the joint distri-
bution. For example, we can only observe a subset of random variables in
the available training samples:{(

x(1)1 , ∗, x(1)3 , · · ·
)
,
(
x(2)1 , ∗, x(2)3 , · · ·

)
, · · · ,

(
x(i)1 , ∗, x(i)3 , · · ·

)
, · · ·

}
,

where we assume the latent variable x2 is not observed in the training set.
In this case, we have to marginalize out all latent variables to derive the
following log-likelihood function for parameter estimation:

l(θ) =
∑
i

ln
∑
x2

pθ
(
x(1)1 , x2, x(1)3 , · · ·

)
.

Similar to the mixture models described in Chapter 12, this log-likelihood
function contains some log-sum terms. In this case, we can use the expectation-
maximization (EM) method to estimate all model parameters θ in an
iterative fashion.

15.2.4 Inference Algorithms

Once a Bayesian network is learned, it fully specifies a joint distribution
of all underlying random variables as follows:

p
(

x1, x2, x3︸    ︷︷    ︸
observed x

, x4, x5, x6︸    ︷︷    ︸
interested y

, x7, x8, · · ·︸     ︷︷     ︸
missing z

)
.

As shown previously, we can always categorize all random variables into
three different groups:

1. All observed variables, denoted as x;
2. Some unobserved variables that we are interested in, denoted as y;
3. The remaining unobserved variables, denoted as z.
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The central inference problem lies in that we want to use the given
Bayesian network to make some decisions regarding the variables of inter-
est y based on the observed variables x. As we have seen in the discussion
of Bayesian decision theory in Chapter 10, the optimal decision must
be made based on the conditional distribution p(y | x). The Bayesian net-
work specifies the joint distribution p(x, y, z), and the required conditional
distribution can be readily computed as follows:We assume all random variables are dis-

crete here. For continuous random vari-
ables, we just need to replace all summa-
tions with the integrals over y or z. p(y | x) =

p(x, y)
p(x)

=

∑
z p(x, y, z)∑

y,z p(x, y, z)
. (15.4)

Once the Bayesian network is given, at least in principle, we can sum over
all combinations of y and z to compute the numerator and denominator
so as to derive the required conditional distribution. However, any brute-
force method is extremely expensive in computation. Assume the total
number of variables in y and z is T , and each discrete random variable
can take up to K distinct values. The computational complexity to sum
for the denominator is exponential (i.e., O(KT )), which is prohibitive in
practical scenarios. Therefore, when we use any Bayesian network to make
inferences, the critical question is how to design more efficient algorithms
to compute the summations in a smarter way.

Table 15.1 lists the popular inference algorithms proposed for graphical
models in the literature. Generally speaking, these inference algorithms
are broken into two major categories: exact or approximate inference.

Table 15.1: A summary of some represen-
tative inference algorithms for a variety
of graphical models:

1. Brute-force method
2. Forward–backward method
3. Sum-product algorithm (a.k.a. be-

lief propagation)
4. Max-sum algorithm
5. Junction-tree algorithm
6. Loopy belief propagation
7. Variational inference
8. Expectation propagation
9. Monte Carlo sampling

Here, T denotes the total number of
random variables in a discrete graphi-
cal model, and K denotes the maximum
number of distinct values each discrete
variable can take, and p is the tree width
of a graph.

Inference Applicable Complexity

algorithm graphs

Brute force All O(KT )

Forward–backward Chain O(T · K2)

Exact Sum-product Tree O(T · K2)

inference (belief propagation)

Max-sum Tree O(T · K2)

Junction tree All O(Kp)

Loopy belief propagation All —

Approximate Variational inference All —

inference Expectation propagation All —

Monte Carlo sampling All —

All exact-inference algorithms aim to precisely compute the conditional
distribution in an efficient way. The basic idea behind these exact-inference



15.2 Bayesian Networks 357

methods is to use dynamic programming to compute the summations
locally and recursively by exploring the structure of a graph, such as
the forward–backward algorithm [194] for chain-structured graphs and the
sum-product algorithm (a.k.a. belief propagation) [180, 140, 134, 22] and the
max-sum algorithm [245, 22] for tree-structured graphs. In general, these
algorithms are fairly efficient because the summations can be computed
by some local operations in an acyclic graph, such as message passing
between two neighboring nodes. Therefore, the computational complexity
of these algorithms is usually quadratic (i.e., O(T · K2)).

However, for more general graphs, dynamic programming leads to the
famous junction-tree algorithm [140, 13]. The computational cost of the
junction-tree algorithm will grow exponentially with the tree width (de-
noted as p) of a graph, which is defined as the largest number of mutually
connected nodes in the graph. Therefore, the junction-tree algorithm nor-
mally becomes impractical for large and densely connected graphs.

On the other hand, approximate-inference methods aim to approximate
the conditional distribution using different strategies. In the so-called loopy
belief propagation method [182, 71], the computationally cheap sum-product
algorithm is directly run on a general graph that may contain loops. This
method will not produce the correct result for any cyclic graph, but it has
been found that it may yield acceptable results in some applications [70,
154].

In the variational inference [119, 5] and expectation propagation [164, 22]
methods, some variational distributions q(y) are used to approximate
the true conditional distribution p(y | x). Similar to Section 14.3.2, under
some factorization assumptions, the best-fit variational distribution can
be derived using some iterative methods. After that, the inference will
be made based on the best-fit variational distribution instead of the true
conditional distribution.

Finally, in the Monte Carlo method [155], we directly sample the joint
distribution specified by a graphical model to generate many independent
samples. The conditional distribution is then estimated from all randomly
drawn samples. This method normally results in fairly accurate estimates
if we have resources to generate a large number of samples.

In this chapter, we will not fully cover the inference algorithms in Table 15.1
but just want to use some simple cases to highlight the key ideas behind
them. For example, we will briefly introduce the forward–backward algo-
rithm to explain how to perform message passing on a chain-structured
graph, and we will use a simple example to show how to implement
Monte Carlo sampling to generate samples to estimate the required condi-
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tional distribution. Interested readers need to refer to the given references
for more details on other inference algorithms.

Forward–Backward Inference: Message Passing on a Chain

Given a Bayesian network of T discrete random variables, each of which
takes up to K distinct values, as shown in Figure 15.21, the chain structure
suggests the following factorization for the joint distribution of these
variables:

p(x1, x2, · · · , xT ) = p(x1)p(x2 |x1) · · · p(xn |xn−1) · · · p(xT |xT−1). (15.5)

Figure 15.21: An illustration of a chain-
structured Bayesian network ofT random
variables (i.e., x1, x2, · · · , xT ).

Let us consider how to compute the summations in this Bayesian network
as required by the conditional distribution in Eq. (15.4). As an example,
we will compute the marginal distribution p(xn) of one arbitrary variable
xn. By definition, we need to marginalize out all other variables in the joint
distribution as follows:

p(xn) =
∑
x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xT

p(x1, x2, · · · , xT ).

This summation involves KT−1 different terms, and the computational
complexity is generally exponential. However, if we explore the chain
structure of the network, we can significantly facilitate the computation.

After we substitute the chain factorization in Eq. (15.5) into the previous
summation, we can group the summation into a product of two parts;
one is the summation from x1 to xn−1, and the other is from xn+1 to xT , as
follows:

p(xn) =
∑
x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xT

p(x1)p(x2 |x1)p(x3 |x2) · · · p(xT |xT−1)

=

( ∑
x1 · · ·xn−1

p(x1) · · · p(xn |xn−1)

) ( ∑
xn+1 · · ·xT

p(xn+1 |xn) · · · p(xT |xT−1)

)
.

Furthermore, this chain factorization allows us to use dynamic program-
ming to recursively sum over each individual variable one by one for both
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parts, as follows:

p(xn) =

αn (xn )︷                                                                        ︸︸                                                                        ︷

( ∑
xn−1

p(xn |xn−1) · · ·

α3(x3)︷                                          ︸︸                                          ︷
(∑

x2

p(x3 |x2)

α2(x2)︷                    ︸︸                    ︷(∑
x1

α1(x1)︷︸︸︷
p(x1) p(x2 |x1)

) ) )
( ∑
xn+1

p(xn+1 |xn) · · ·
( ∑
xT−1

p(xT−1 |xT−2)
(∑
xT

p(xT |xT−1)
)

︸                ︷︷                ︸
βT−1(xT−1)

)
︸                                             ︷︷                                             ︸

βT−2(xT−2)

)

︸                                                                           ︷︷                                                                           ︸
βn (xn )

Note that this recursive summation tech-
nique is the same, in principle, as the forward–
backward algorithm for HMMs discussed
in Section 12.4.

All summations for each αt (xt ) and βt (xt ) can be recursively computed as
follows:

αt (xt ) =
∑
xt−1

p(xt |xt−1)αt−1(xt−1) (∀t = 2, · · · , n)

βt (xt ) =
∑
xt+1

p(xt+1 |xt ) βt+1(xt+1) (∀t = T − 1, · · · , n).

If we use the matrix form in Figure 15.4 to represent each conditional
distribution p(xt |xt−1) as a K × K matrix

[
µ
(t)
i j

]
, and we use two K × 1

vectors (i.e., αt and βt ) to represent αt (xt ) and βt (xt ) for K different values
of xt , the previous two equations can be compactly represented with
matrix multiplication as follows:

αt =

[
µ
(t)
i j

]
αt−1 (∀t = 2, · · · , n)

βt =

[
µ
(t+1)
i j

]ᵀ
βt+1 (∀t = T − 1, · · · , n).

It is easy to verify that the computational complexity of each of these
updates is O(K2). Each of these local updates can be represented as shown
in Figure 15.22.

Interestingly enough, the previous computation can be conveniently im-
plemented as some local operations on the graph. Assume we maintain a
message, vector αt , for each node xt in the graph. After we initialize for
the first node x1 on the chain as α1 =

[
p(x1)

]
, we can use the previous

formula to recursively update all messages on the chain one by one from
left to right, as shown in Figure 15.23. These local graph operations are
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Figure 15.22: An illustration of using ma-
trix multiplication to locally update mes-
sages for each node on a chain: (top) for-
ward updating from left to right; (bottom)
backward updating from right to left.

often called message passing (a.k.a. belief propagation). The idea of message
passing can also be applied to all vectors βt in the graph. We first initialize
it for the last node on the chain xT as βT = 1, and we use the previous
formula to similarly pass the messages backward one by one all the way
to x1, as shown in Figure 15.23.

Figure 15.23: An illustration of mes-
sage passing along a chain-structured
Bayesian network, where the message αn

is passed from xn−1 to xn in a forward
process while the message βn is passed
from xn+1 to xn in a backward process.

Once we have obtained both αt and βt for all nodes in the graph, we can
use them to compute many marginal distributions, for example, p(xn) =
αn(xn)βn(xn) and p(xn, xn+1) = αn(xn)p(xn+1 |xn)βn+1(xn+1), and so on.

The message-passing mechanism can be easily modified to accommodate
observed variables. For example, if we have observed a variable xt = ωk ,
which belongs to the group of x in Eq. (15.4), when we pass messages on
the graph, we do not need to sum over all different values for xt but just
replace the sum with the observed value ωk , as follows:

αt+1(xt+1) = p(xt+1 |xt )αt (xt )
���
xt=ωk

βt−1(xt−1) = p(xt |xt−1)βt (xt )
���
xt=ωk

.

Finally, the local operation of message passing on a graph can be extended
to deal with more general graphical models. However, for non-chain struc-
tures, we usually cannot directly run the message-passing algorithm on
the original graph of a given model but have to create some intermedi-
ate proxy graphs for message passing, for example, the so-called factor
graphs built for tree-structured models [134] or the junction trees for cyclic
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Figure 15.24: An illustration of a Bayesian
network of seven discrete random vari-
ables, p(x1, x2, x3, x4, x5, x6, x7), which is
defined by the following conditional dis-
tributions:
p(x1), p(x2), p(x3)

p(x4 |x1, x2, x3)

p(x5 |x1, x3)

p(x6 |x4)

p(x7 |x4, x5)

graphical models [140]. After that, the same message-passing operations
between neighboring nodes can be similarly implemented over a proxy
graph to derive an exact-inference algorithm for these graphical models.

Monte Carlo Sampling

The Monte Carlo–based sampling method can be used to estimate any con-
ditional distribution in Eq. (15.4) for any arbitrarily structured graph [155].
The concept of sampling methods is straightforward. Here, we consider a
simple example to show how to conduct sampling to generate samples
that are suitable for estimating a particular conditional distribution. Let us
consider a simple Bayesian network of seven discrete random variables,
as shown in Figure 15.24, where all conditional distributions are given.
Assume three variables x1, x3, and x5 are observed, whose values are de-
noted as x̂1, x̂3, and x̂5. We are interested in making an inference on x6 and
x7. Let us consider how to sample this Bayesian network to estimate the
conditional distribution p(x6, x7 | x̂1, x̂3, x̂5).

We can design the sampling scheme in Algorithm 15.20 to generate N
training samples for this conditional distribution. In each step, we just
randomly generate a sample from a multinomial distribution. Based on
the given conditions, each multinomial distribution basically corresponds
to one column in Figure 15.4 or one slice in Figure 15.5. After all random
samples are obtained in D, we just use D to estimate a joint distribution
of x6 and x7, which will be a good estimate of p(x6, x7 | x̂1, x̂3, x̂5) as long as
N is sufficiently large.

Algorithm 15.20 Monte Carlo Sampling for p(x6, x7 | x̂1, x̂3, x̂5)

D = ∅; n = 0
while n < N do

1. sampling x̂(n)2 ∼ p(x2)

2. sampling x̂(n)4 ∼ p(x4 | x̂1, x̂(n)2 , x̂3)

3. sampling x̂(n)6 ∼ p(x6 | x̂
(n)
4 )

4. sampling x̂(n)7 ∼ p(x7 | x̂
(n)
4 , x̂5)

5. D⇐ D∪ {(x̂(n)6 , x̂(n)7 )}

6. n = n + 1
end while

15.2.5 Case Study I: Naive Bayes Classifier

In a pattern-classification task, we aim to classify an unknown object into
one of K predefined classes, denoted as y ∈ {ω1,ω2, · · · ,ωK }, based on a
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Figure 15.25: Naive Bayes classifiers can
be represented as a Bayesian network,
where all observed features {xi } are used
to infer the unknown class label y.

number of observed features regarding this object, denoted as {x1, x2, · · · xd}.
The so-called naive Bayes assumption [159] states that all these features
are conditionally independent given the class label y. This conditional
independence assumption leads to the naive Bayes classifiers shown in Fig-
ure 15.25, which are among the simplest Bayesian networks in machine
learning. The naive Bayes assumption is implied in this model structure
because the class label y is a confounder of all observed features, which
suggests the following factorization to the joint distribution:

p(y, x1, x2, · · · , xd) = p(y)p(x1 |y)p(x2 |y) · · · p(xd |y)

= p(y)
d∏
i=1

p(xi |y).

In a naive Bayesian classifier, all observed features are used to infer the
unknown class label y as follows:

y∗ = arg max
y

p(y |x1, x2, · · · , xd) = arg max
y

p(y)
d∏
i=1

p(xi |y).

Naive Bayes classifiers are very flexible in dealing with a variety of feature
types. For example, we can separately choose each conditional distribution
p(xi |y) according to the property of a feature xi , for example, a Bernoulli
distribution for a binary feature, a multinomial distribution for a nonbi-
nary discrete feature, and a Gaussian distribution for a continuous feature.
The total number of parameters in a naive Bayes classifier is linear in the
number of features. The learning and inference of naive Bayes classifiers
can be done with some closed-form solutions, which are also linear in
the number of different features. As a result, naive Bayes classifiers are
highly scalable to large problems that involve a tremendous number of
different features, such as information retrieval [159] and text-document
classification.

15.2.6 Case Study II: Latent Dirichlet Allocation

How to model text documents is an important application in machine
learning. The simple bag-of-words model is normally considered to be a
shallow model because it treats all words in a document equally without
taking into account the text structure of the document. An ideal generative
model for documents should be able to explore the inherent text structure
because the text structure is crucial in conveying semantic meanings in
natural language. Topic modeling is a well-known technique along these
lines for exploring some finer structures in documents. The key observa-
tion behind the topic models is that each document usually touches only a
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small number of coherent topics, and some words are used to describe one
topic much more often than the others. In other words, a document can be
described by a distribution of topics, and each topic can be described by a
skewed distribution of all words. On the other hand, because we can only
observe the words in a document but not the underlying topics, the topics
must be treated as latent variables in a topic model.

Figure 15.26: An illustration of how to
model a text document using a topic
model, such as LDA. All words labeled
by the same color are assumed to come
from the same topic. (Image source: Blei
et al. [23].)

Latent Dirichlet allocation (LDA) [23] is a popular topic model that takes a
hierarchical modeling approach for each word in a document. As shown
in Figure 15.26, in LDA, we assume that each document has a unique
distribution of all possible topics, and each word in a document comes
from one particular topic (labeled by a color). In this case, all words from
the same topic (with the same color) come from the same word distribution,
whereas a different topic usually has a different distribution of words. In
the following, we will briefly consider LDA as a case study of Bayesian
networks because LDA is one of the most popular Bayesian networks
widely used in practical applications.

Assume we have a corpus of M documents, and each document contains
Ni (i = 1, 2, · · · , M) words. Furthermore, assume that there are K different
topics in total, and all documents in the corpus contain V distinct words
in total. In LDA, we assume that these text documents are generated from
the following stochastic process:

1. For each document i = 1, 2, · · · , M, we first sample a topic distribu-
tion θi from a Dirichlet distribution:

θi ∼ p(θ) = Dir(θ | α),

where α ∈ RK denotes the unknown parameters of the Dirichlet
distribution. Here, θi essentially denotes the model parameters of
a topic distribution, which is a multinomial distribution of K cate-
gories (one category for each topic). Furthermore, if we restrict all
parameters in α to be less than 1, the Dirichlet distribution concen-
trates more at the corners of the K-simplex, as shown in Figure 2.9;
namely, it favors sparse values over dense ones for θ. In LDA, a
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Figure 15.27: Representing an LDA as a
Bayesian network, where each document
samples a topic distribution θi from a
Dirichlet distribution and then at each
location of document, a topic zi j is first
sampled from this topic, and a word wi j

is sampled from the word distribution as-
sociated with this topic.

sparse Dirichlet distribution is always preferable because usually
only smaller numbers of coherent topics are touched in a document.

We choose a multinomial distribution for
the topic distribution or the word distri-
butions because both topics and words
are viewed as discrete random variables.
A Dirichlet distribution is chosen as a dis-
tribution of various topic distributions be-
cause Dirichlet distributions are the con-
jugate prior of multinomial distributions.

2. For each location j = 1, 2, · · · , Ni in the ith document,

a. We first sample a topic zi j from the multinomial distribution
with model parameters θi :

zi j ∼ p(z | θi) =Mult(z | θi),

where each zi j = [zi j1 · · · zi jK ] is represented as a 1-of-K vector,
taking one of K distinct values for each topic.

b. In LDA, we maintain K different word distributions for all K
different topics. Each word distribution is essentially a multino-
mial distribution of V categories (i.e., Mult(w | βk )), where βk
denotes the unknown parameters for the word distribution of
the kth topic (k = 1, 2, · · · , K). According to zi j , we further sam-
ple the word distribution associated with this topic to generate
a word wi j for this location:

wi j ∼

K∏
k=1

(
Mult

(
wi j | βk

) )zi jk
,

where we also represent each wi j = [wi j1 · · · wi jV ] as a 1-of-V
vector, taking one of V distinct values for each unique word.

Putting it all together, we can represent the LDA model as a Bayesian
network, as shown in Figure 15.27. If we denote all topic distributions as
Θ =

{
θi

�� 1 ≤ i ≤ M
}
, all words in all documents as W =

{
wi j

�� 1 ≤ i ≤
M ; 1 ≤ j ≤ Ni

}
, and all sampled topics as Z =

{
zi j

�� 1 ≤ i ≤ M ; 1 ≤ j ≤ Ni

}
,

the model structure in Figure 15.27 suggests the following way to factorize
the joint distribution:

p(Θ, Z, W) =
M∏
i=1

p(θi)
Ni∏
j=1

p(zi j | θi) p(wi j | zi j ),

where each conditional distribution is further represented as follows:

p(θi) = Dir(θi
�� α)

p(zi j | θi) =Mult(zi j
�� θi)

p(wi j | zi j ) =
K∏
k=1

(
Mult

(
wi j | βk

) )zi jk
.

In most tasks involving natural language processing, the number of dis-
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tinct words (i.e., V) is usually very large. As suggested in Blei et al. [23], it is
better to add a symmetric Dirichlet distribution as a universal background
to smooth out 0 probabilities for unseen words in p(wi j | zi j ). Therefore,
we can modify the previous p(wi j | zi j ) as follows: A Dirichlet distribution is said to be sym-

metric if all of its parameters are equal,
such as

Dir(w | η · 1)

where 1 = [1 · · · 1]ᵀ.

p(wi j | zi j ) = Dir(wi j

�� η · 1) K∏
k=1

(
Mult

(
wi j

�� βk ) )zi jk
If we substitute these conditional distributions into the previous factoriza-
tion equation, we can represent the joint distribution as follows:

p
(
Θ, Z, W ; α, β, η

)
,

where α ∈ RK , β ∈ RK×V , and η ∈ R denote all unknown parameters in
an LDA model. These model parameters are estimated by maximizing the
likelihood function of the observed documents, given as follows:

p
(
W ; α, β, η

)
=

∭
θ1 · · ·θM

M∏
i=1

p(θi)
Ni∏
j=1

∑
zi j

p(zi j | θi) p(wi j | zi j ) dθ1 · · · dθM .

On the other hand, the inference problem in LDA lies in how to infer the
underlying topic distribution θi for each document and the most probable
topic zi j for each word in all documents. These inference decisions rely on
the following conditional distribution:

p
(
Θ, Z

�� W)
=

p
(
Θ, Z, W

)
p
(
W

) =
p
(
Θ, Z, W

)∭
Θ

∑
Z p

(
Θ, Z, W

)
dΘ

.

Unfortunately, both learning and inference problems in LDA are computa-
tionally intractable because both require us to compute some complicated
multiple integrals. Some approximate-inference methods must be used
here to alleviate the computational difficulty. Blei et al. [23] have proposed
a variational inference method to use the following variational distribu-
tion:

q(Θ, Z) =
M∏
i=1

q(θi
��γ) Ni∏

j=1

q(zi j
��φi j ) (15.6)

to approximate the true conditional distribution p
(
Θ, Z

�� W)
. Following

the same variational Bayesian procedure as in Section 14.3.2, we can show
that q(θi

��γ) turns out to be a Dirichlet distribution, each q(zi j
��φi j ) is a

multinomial distribution, and all variational parameters γ and φi j can
be iteratively estimated from the observed W. Relying on the estimated
variational distribution, we can derive an iterative algorithm to learn all
of the LDA parameters {α, β, η} by maximizing a variational lower bound
of the previous p

(
W ; α, β, η

)
,

The iterative training procedure to learn
{α, β,η } is similar to that for variational
autoencoders (VAEs) in Section 13.4.

and we can also derive a MAP estimate for
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Figure 15.28: An example MRF represent-
ing a joint distribution of seven random
variables, {x1, x2, · · · , x7 }.

all θi and zi j . Interested readers can refer to Blei et al. [23] for more details
on this.

15.3 Markov Random Fields

This section introduces the second class of graphical models, namely, undi-
rected graphical models (a.k.a. Markov random fields) [128, 203], which use
undirected links between nodes in a graph to indicate the relation of vari-
ous random variables. Moreover, it briefly introduces two representative
models in this category, namely, conditional random fields [138, 233] and
restricted Boltzmann machines [226, 97].

15.3.1 Formulation: Potential and Partition Functions

Similar to Bayesian networks, Markov random fields (MRFs) are another
graphical representation that is used to describe a joint distribution of
random variables. In MRFs, we still use a node to represent a random
variable, but we use undirected links to represent dependency between
random variables. Unlike Bayesian networks, the striking difference here is
that each link does not directly represent a conditional distribution but just
some mutual dependency among the linked variables. For example, Figure
15.28 shows a simple MRF that represents a joint probability distribution
of seven random variables (i.e., p(x1, x2, · · · , x7)). From the graph, we can
immediately recognize that x3 and x6 are statistically independent (i.e.,
x3 ⊥ x6) because they are not connected by any links. On the other hand,
x4 must be dependent on x5 (i.e., x4 6⊥ x5) because of the undirected link
between them.

First of all, let us discuss how to formulate the joint distribution in MRFs.
We first define a clique in an MRF as a subset of nodes that are mutually
connected in the graph. In other words, there exists a link between all
pairs of nodes in a clique. For example, {x1, x2}, {x1, x2, x3}, and {x2, x4}

are three cliques in the MRF shown in Figure 15.28. Furthermore, a clique
is said to be a maximum clique if it is not contained by another larger clique.
In Figure 15.28, {x1, x2} is not a maximum clique because it is a subset
of another larger clique {x1, x2, x3}. On the other hand, both {x1, x2, x3}

and {x2, x4} are maximum cliques because we cannot enlarge them into
a larger clique. After some inspection, we can recognize that the MRF in
Figure 15.28 has a total of four maximum cliques (i.e,. c1 = {x1, x2, x3},
c2 = {x2, x4}, c3 = {x4, x5}, and c4 = {x6, x7}).

In general, each MRF contains a finite number of maximum cliques. When
we formulate a joint probability distribution for an MRF, we need to
define a so-called potential function ψ(·) over all random variables in each
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maximum clique c, denoted as xc . The joint distribution of an MRF is
defined as a product of the potential functions of all maximum cliques in
the graph, divided by a normalization term:

p(x) =
1
Z

∏
c

ψc(xc), (15.7)

where the term Z is the normalization term, often called the partition
function, which is computed by summing the product of all potential
functions over the entire space of all random variables: The summation in Z is replaced by inte-

grals for continuous random variables.

Z =
∑

x

∏
c

ψc(xc).

Moreover, we always choose nonnegative potential functions ψc(xc) ≥ 0
to ensure that p(x) ≥ 0 holds for any x. By doing so, we can see that the
previous p(x) defined in Eq. (15.7) is always a valid probability distribution
of x because it is nonnegative for any x, and it satisfies the sum-to-1
constraint over the entire space of x.

As an example, we can see that the MRF in Figure 15.28 defines a joint
distribution as follows:

p(x1, x2, · · · , x7) =
ψ1(x1, x2, x3)ψ2(x2, x4)ψ3(x4, x5)ψ4(x6, x7)∑

x1 · · ·x7 ψ1(x1, x2, x3)ψ2(x2, x4)ψ3(x4, x5)ψ4(x6, x7)
,

where ψ1(·), ψ2(·), ψ3(·), and ψ4(·) are four potential functions that we may
choose arbitrarily.

Because the potential functions must be nonnegative, it is convenient to
express them as exponentials:

ψc(xc) = exp
(
− E(xc)

)
,

where E(xc) is called an energy function, which can be defined in many
ways (e.g., a linear function, a quadratic function, or a higher-order poly-
nomial function). We will further explore how to choose energy functions
for an MRF in the following case studies. The joint distribution p(x) ex-
pressed by the previous exponentially-formed potential functions is often
called a Boltzmann distribution.

Compared with Bayesian networks, a major advantage of using MRFs
is that we can simply rely on graph separation to quickly determine the
conditional independence of random variables in the joint distribution
defined in Eq. (15.7). Given any three disjoint subsets of nodes in an MRF
(e.g., A, B and C), we can determine the following conditional indepen-
dence property:

A ⊥ B
��C
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Figure 15.29: An illustration of condi-
tional independence in an MRF:

A ⊥ B
��C.

(Source: Bishop [22].)

by inspecting whether all paths from A to B are blocked by at least a
node in C. In other words, after we remove all nodes in C, along with
all links that connect to these nodes from the graph, if there still exists a
path connecting any node in A to any node in B, we say A and B are not
conditionally independent given C. Otherwise, if there are no such paths
left, then the conditional independence property holds. For example, in the
MRF shown in Figure 15.29, we can verify that A and B are conditionally
independent given C.

When we learn model parameters of an MRF from some training samples,
we can still use the MLE method in the same way as in Bayesian networks.
However, because the log-likelihood function of any MRF needs to be
constructed from the joint distribution in Eq. (15.7), it always contains the
partition function Z . The partition function is awkward to handle because
it requires us to sum over the entire input space. Generally speaking, the
learning of MRFs is much harder than that of Bayesian networks. The
partition function becomes the major limitation of using MRFs in practice.
In the following case studies, we will briefly explore how to use sampling
methods to deal with the intractable partition function when learning an
MRF.

On the other hand, MRFs generally do not impose any difficulty in the
inference stage. When we compute the conditional distribution in Eq.
(15.4) for an MRF, we can see that the intractable partition function Z
actually cancels out from the numerator and denominator. As a result, all
inference algorithms in Table 15.1 are equally applicable to MRFs.

15.3.2 Case Study III: Conditional Random Fields

Assume that we consider two groups of random variables, namely, X =
{x1, x2, · · · , xT } and Y = {y1, y2, · · · , yT }. A regular MRF aims to establish
a joint distribution p(X, Y) for these random variables. Alternatively, con-
ditional random fields (CRFs) [138] are undirected graphical models that
aim to specify the conditional distribution p(Y | X). In the CRF setting, one
group of random variables X is always assumed to be given, and a CRF
model aims to establish a probability distribution only for the other group
of random variable Y based on the same idea of potential functions in a
regular MRF. In a graph of any CRF, we can first imagine removing all
nodes in X, along with all links associated with any node in X. Then we
consider all maximum cliques in the leftover graph of only all Y nodes,
where a potential function is defined for each maximum clique. Based on
these potential functions, we define the conditional distribution for a CRF
as follows:

p(Y | X) =
∏

c ψC (Yc , X)∑
Y

∏
c ψC (Yc , X)

,
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Figure 15.30: An illustration of a CRF
that defines a conditional distribution
p(Y | X).

Figure 15.31: An illustration of a linear-
chain CRF that defines a conditional dis-
tribution for two sequences.

where the numerator is the product of the potential functions for all
maximum cliques. Note that each CRF potential function is applied to all
Y nodes in a maximum clique of the leftover graph, as well as all removed
nodes in X. This is possible in CFRs because all randoms variables in X are
always assumed to be given in the first place.

For example, in the CRF in Figure 15.30, the leftover graph of Y (labeled in
red) contains two maximum cliques, c1 = {y1, y2, y3} and c2 = {y2, y3, y4}.
Therefore, the conditional distribution of this CRF can be expressed as
follows:

p(Y | X) =
ψ1(y1, y2, y3, X)ψ2(y2, y3, y4, X)∑

y1y2y3y4 ψ1(y1, y2, y3, X )ψ2(y2, y3, y4, X).

The most popular CRF is the so-called linear-chain conditional random field
[138, 233], where all Y nodes form a chain structure. As shown in Figure
15.31, the maximum cliques of the leftover graph of Y are the pairs of con-
secutive variables on the chain, that is,

{
y1, y2

}
,
{
y2, y3

}
, · · · ,

{
yT−1, yT

}
.

Based on the previous definition, the conditional distribution of a linear-
chain CRF is given as follows:

p(Y | X) =
∏T−1

t=1 ψ(yt , yt+1, X)∑
Y

∏T−1
t=1 ψ(yt , yt+1, X)

.

Furthermore, we can use some feature functions to specify a linear energy
function for the previous potential function as follows:

ψ(yt , yt+1, X) = exp
( K∑
k=1

wk · fk (yt , yt+1, X)
)
,

where fk (·) denotes the kth feature function that is normally manually
specified to reflect one particular aspect of the input–output pair at a loca-
tion on the chain, and wk is an unknown weight for kth feature function.
Usually, all feature functions fk (·) do not have any learnable parameters,
and all weights

{
wk | 1 ≤ k ≤ K

}
constitute the model parameters of a

linear-chain CRF model. The model parameters can be estimated based on
MLE. Under this setting, the log-likelihood function of a linear-chain CRF
is concave, and it can be iteratively optimized by some gradient-descent
algorithms. Moreover, we can use the forward–backward inference algo-
rithm described on page 358 to make inferences for any linear-chain CRF
in a very efficient manner. As a result, the linear-chain CRFs are widely
used for many large-scale sequence-labeling problems in natural language
processing and bioinformatics [233].
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Figure 15.32: An illustration of restricted
Boltzmann machines that represent a joint
distribution of two groups of binary ran-
dom variables, {vi } and {h j }.

15.3.3 Case Study IV: Restricted Boltzmann Machines

Restricted Boltzman machines (RBMs) [226, 97] are another class of popular
MRFs in machine learning and can specify a joint distribution of two
groups of binary random variables, that is, some visible variables vi and
some hidden variables hj , where each vi ∈ {0, 1} and hj ∈ {0, 1} for all
1 ≤ i ≤ I and 1 ≤ j ≤ J. As shown in Figure 15.32, these binary random
variables form a bipartite graph, where every pair of nodes from each of
these two groups is linked, and there are no connections between nodes
within a group. We can see that the maximum cliques of this graph include
all pairs of nodes {vi , hj } for all i and j. Assume we define a potential
function for each of these maximum cliques as follows:

ψ(vi , hj ) = exp
(
aivi + bjhj + wi jvihj

)
,

where ai , bj , and wi j are some learnable parameters of an RBM model.
Putting the potential functions of all maximum cliques together, the joint
distribution of these random variables can be expressed as

p
(
v1, · · · , vI , h1, · · · , hJ

)
=

1
Z

I∏
i=1

J∏
j=1

ψ(vi , hj ),

where Z denotes the partition function (see margin note).The partition function in RBMs is com-
puted as follows:

Z =
∑

v1 ···vI

∑
h1 ···hJ

I∏
i=1

J∏
j=1

ψ(vi ,h j )

=
∑

v1 ···vI

∑
h1 ···hJ

exp
( I∑
i=1

aivi+

J∑
j=1

b jh j +

I∑
i=1

J∑
j=1

wi jvih j

)
=

∑
v

∑
h

exp
(
aᵀv + bᵀh + vᵀWh

)
.

After substitut-
ing the previous potential functions, we can derive the joint distribution
of an RBM model as follows:

p
(
v1, · · · , vI , h1, · · · , hJ

)
=

1
Z

exp
( I∑
i=1

aivi +
J∑
j=1

bjhj +

I∑
i=1

J∑
j=1

wi jvihj

)
.

If we represent all variables with the following vectors and matrix:

a =


a1

...

aI


b =


b1

...

bJ


v =


v1

...

vI


h =


h1

...

hJ


W =

[
wi j

]
I×J

we can represent an RBM model with the following matrix form:

p(v, h) =
1
Z

exp
(
aᵀv + bᵀh + vᵀWh

)
, (15.8)

where a, b and W denote the model parameters of an RBM that need to be
estimated from training samples.

The RBMs are often used for representation learning. For example, if we
feed all binary pixels of a black-and-white image into an RBM as the
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visible variables, we may wish to learn the RBM in such a way that it
can extract some meaningful features in its hidden variables. The RBM
parameters can be learned by maximizing the log-likelihood function of
all visible variables:

arg max
a,b,W

∏
vi ∈D

p(vi) = arg max
a,b,W

∏
vi ∈D

∑
h exp

(
aᵀvi + bᵀh + vᵀi Wh

)
∑

h
∑

v exp
(
aᵀv + bᵀh + vᵀWh

)
where Ddenotes a training set of some samples of visible nodes {vi}. Hin-
ton [96] proposes the so-called contrastive divergence algorithm to learn the
RBM parameters by embedding random sampling into a gradient-descent
procedure. The sampling method is used to deal with the intractable
summations in the objective function.

p(vi ) =
∑

h

p(vi , h)

=
1
Z

∑
h

exp
(
aᵀvi + bᵀh + vᵀi Wh

)
=

∑
h exp

(
aᵀvi + bᵀh + vᵀi Wh

)
∑

h
∑

v exp
(
aᵀv + bᵀh + vᵀWh

)
where h and v are summed over all possi-
ble values in their entire spaces.

Once the RBM is given, the inference problem in RBMs is fairly simple.
Because the RBM has the shape of a bipartite graph shown in Figure
15.32, we can verify that all hidden nodes are conditionally independent
given all visible nodes, and conversely, all visible nodes are conditionally
independent given all hidden nodes. In other words, we have

p(h
�� v) = J∏

j=1

p(hj

�� v)
p(v

�� h) = I∏
i=1

p(vi
�� h).

After substituting the RBM distribution in Eq. (15.8) into the previous
equation, we can further derive

Pr(hj = 1
�� v) = l

(
bj +

∑
i=1

wi jvi

)
,

Pr(vi = 1
�� h) = l

(
ai +

∑
j=1

wi jhj

)
,

where l(·) stands for the sigmoid function in Eq. (6.12).

Once all RBM parameters are learned, for any new sample of visible vari-
ables v, we can use this formula to compute the conditional probabilities
for all hidden nodes (i.e., Pr(hj = 1 | v) for all j = 1, 2, · · · , J). These proba-
bilities are then used to estimate all hidden variables h, which can be used
as some feature representations for v.
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Exercises

Q15.1 Assume three binary random variables a, b, c ∈ {0, 1} have the following joint distribution:

a b c p(a, b, c)
0 0 0 0.024
0 0 1 0.056
0 1 0 0.108
0 1 1 0.012
1 0 0 0.120
1 0 1 0.280
1 1 0 0.360
1 1 1 0.040

By direct evaluation, show that this distribution has the property that a and c are marginally depen-
dent (i.e., p(a, c) , p(a)p(c)), but a and c become independent when conditioned on b (i.e., p(a, c |b) =
p(a|b)p(c |b)). Based on this joint distribution, draw all possible directed graphs for a, b, c, and compute all
conditional probabilities for each graph.

Q15.2 Assume three binary random variables a, b, c ∈ {0, 1} have the following joint distribution:

a b c p(a, b, c)
0 0 0 0.072
0 0 1 0.024
0 1 0 0.008
0 1 1 0.096
1 0 0 0.096
1 0 1 0.048
1 1 0 0.224
1 1 1 0.432

By direct evaluation, show that this distribution has the property that a and c are marginally independent
(i.e., p(a, c) = p(a)p(c)), but a and c become dependent when conditioned on b (i.e., p(a, c |b) , p(a|b)p(c |b)).
Based on this joint distribution, draw all possible directed graphs for a, b, c, and compute all conditional
probabilities for each graph.

Q15.3 Given the causal Bayesian network in Figure 15.12, calculate the following probabilities:

a. Pr(W = 1)
b. Pr(L = 1 |W = 1) and Pr(L = 1 |W = 0)
c. Pr(L = 1 | R = 1) and Pr(R = 0 | L = 0)

Q15.4 If all conditional probabilities of the causal Bayesian network in Figure 15.12 are unknown, what types of
data do you need to estimate these probabilities? How will you collect them?

Q15.5 For the Bayesian network in Figure 15.24, design a sampling scheme to generate samples to estimate the
following conditional distributions:

I p(x1, x2 | x̂6, x̂7)

I p(x3, x7 | x̂4, x̂5)
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Q15.6 Following the idea of the VAEs in Section 13.4, use the variational distribution in Eq. (15.6) to derive a
proxy function for the likelihood function of the LDA model (i.e., p

(
W; α, β, η

)
). By maximizing this proxy

function iteratively, derive a learning algorithm for all LDA parameters.

Q15.7 Use the joint distribution of RBMs in Eq. (15.8) to prove the conditional independence of RBMs, and
further derive that both Pr(hj = 1 | v) and Pr(vi = 1 | h) can be computed with a sigmoid function.
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Figure A.1: An illustration of the Poisson
distribution for three choices of the pa-
rameter λ.

Other Probability Distributions A
This appendix, in addition to what we have reviewed in Section 2.2.4, fur-
ther introduces a few more probability distributions that are occasionally
used in some machine learning methods.

1. Uniform Distribution

The uniform distribution is often used to describe a random variable
that equiprobably takes any value inside a constrained region in the
space. For example, the uniform distribution inside an n-dimensional
hypercube [a, b]n takes the following form:

U
(
x

�� [a, b]n
)
=


1

(b−a)n x ∈ [a, b]n

0 otherwise.

2. Poisson Distribution

The Poisson distribution is often used to describe a discrete random
variable X that can take any nonnegative integers, such as counting
data. The Poisson distribution takes the following form:

Poisson
(
n | λ

) ∆
= Pr(X = n) =

e−λ · λn

n!
∀n = 0, 1, 2 · · · ,

where λ is the parameter of the distribution. We can summarize the
key results for the Poisson distribution as follows:

I Parameter: λ > 0
I Support: The domain of the random variable

n = 0, 1, 2, · · ·

I Mean and variance:

E[X] = λ and var(X) = λ

I The sum-to-1 constraint:

∞∑
n=0

Poisson
(
n | λ

)
= 1
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Figure A.2: An illustration of the gamma
distribution for several choices of param-
eters α and β.

As shown in Figure A.1, the Poisson distribution is a unimodal dis-
tribution, and the parameter λ specifies the center and concentration
of the distribution.

3. Gamma Distribution

The gamma distribution is used to describe a continuous random
variable X that can take any positive real value. In machine learning,
the gamma distribution is mainly used as the prior distribution for
the variance parameter σ2, which must be positive, in Bayesian
learning. The general form for the gamma distribution is given as
follows:

gamma
(
x
��α, β

)
=

βα

Γ(α)
xα−1 e−β x ∀x > 0,

where α and β are two parameters of the distribution. We can sum-
marize the key results for the gamma distribution as follows:

I Parameters: α > 0 and β > 0
I Support: The domain of the random variable is x > 0.
I Mean, variance, and mode:

E[X] =
α

β
and var(X) =

α

β2

The gamma distribution is a unimodal bell-shaped curve when
α > 1. The mode of the distribution is α−1

β when α ≥ 1.
I The sum-to-1 constraint:∫ ∞

0
gamma

(
x
�� α, β

)
dx = 1

The shape of the gamma distribution depends on the choice of two
parameters α and β. Figure A.2 plots the gamma distribution for
several typical choices of the parameters.

4. Inverse-Wishart Distribution

The inverse-Wishart distribution is a multivariate generalization
of the gamma distribution [191, 116]. It can be used to describe a
multidimensional continuous random variable that takes a value
on all positive definite matrices X ∈ Rd×d . In machine learning, the
inverse-Wishart distribution is mainly used as the prior distribution
for the precision matrix Σ−1 of the multivariate Gaussian model in
Bayesian learning. As we know, the precision matrix must be positive
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definite. The inverse-Wishart distribution takes the following form:

W−1 (X ��Φ, ν
)
=

��Φ��ν/2
2νd/2 Γd

(
ν
2
) �� X ��− ν+d+1

2 e−
1
2 tr(ΦX−1),

where Φ ∈ Rd×d and ν ∈ R+ are two parameters of the distribution,
Γd(·) is the multivariate gamma function [1], and tr(·) denotes the
matrix trace. We can summarize several key results for the inverse-
Wishart distribution as follows:

I Parameters: Φ ∈ Rd×d is positive definite (Φ � 0), and ν ∈ R is
larger than d − 1 (ν > d − 1).

I Support: The domain of the random variable is X � 0.
I Mean and mode:

E
[
X
]
=

Φ

ν − d − 1

The mode of the distribution is Φ
ν+d+1 .

I The sum-to-1 constraint:∫
· · ·

∫
X�0

W−1 (X ��Φ, ν
)

dX = 1

5. von Mises–Fisher Distribution

The von Mises–Fisher (vMF) distribution is an extension of the mul-
tivariate Gaussian distribution to describe a random vector x ∈ Rd

that only takes a value on the surface of a unit hyper-sphere. In
machine learning, the vMF distribution is useful in dealing with
high-dimensional feature vectors whose norms are noisy and unre-
liable [12, 261]. The von Mises–Fisher (vMF) distribution takes the
following form:

vMF
(
x | u

)
=

‖u‖d/2−1

(2π)d/2Id/2−1
(
‖u‖

) exp
(
uᵀx

)
,

where u ∈ Rd denotes the parameter of the distribution, and Iv(·) is
the modified Bessel function of the first kind at order v [1].
Some key results for the vMF distribution can be summarized as
follows:

I Parameters: u ∈ Rd

I Support: The domain of the random vector is the surface of the
unit hyper-sphere (i.e., x ∈ Rd and ‖x‖ = 1).

I Mean and mode:
E

[
x
]
=

u
‖u‖

The mode of the distribution is the same as the mean.
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Figure A.3: An illustration of two vMF
distributions in a three-dimensional (3D)
space. Top panel: u =

[
−1 −2 1

]ᵀ
.

Bottom panel: u =
[
−10 −20 30.

]ᵀ

I The sum-to-1 constraint:∫
· · ·

∫
‖x‖=1

vMF
(
x | u

)
dx = 1

As shown in Figure A.3, the vMF specifies a distribution on the
surface of the unit hyper-sphere, where the mean u

‖u‖ indicates the
center of the distribution, and the norm ‖u‖ indicates the concentra-
tion of the distribution.
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Lagrange dual problem, 56
Lagrange multipliers, 54
Lagrangian function, 55, 56
language modeling, 248
Laplace’s method, 324



LASSO, 73, 139
latent Dirichlet allocation, 74, 362
latent semantic analysis, 142
law of the smooth world, 12
layer normalization, 160
LDA, 74, 84, 362
learnability, 99
learning to learn, 16
least-square error, 112
likelihood function, 232
linear algebra, 19

determinant, 22
eigenvalue, 23
eigenvector, 23
identity matrix, 22
inner product, 22
inverse matrix, 22
matrix, 19
matrix multiplication, 20
matrix transpose, 21
symmetric matrix, 22
trace, 23
vector, 19

linear dimension reduction, 79
linear discriminant analysis, 84, 243
linear Gaussian model, 296, 345

factor analysis, 298
probabilistic PCA, 296

linear kernel, 124
linear programming, 50
linear regression, 72, 112, 251
linear SVM, 73, 116
linear transformation, 20
linear-chain conditional random field, 369
linearly nonseparable, 107
linearly separable, 107
Lipschitz continuous, 13, 18
LLE, 87
local extreme, 51
local maximum, 51
local minimum, 51
local optimization, 52
locality modeling, 158
locally linear embedding, 87
log-linear model, 251, 253
log-sum, 262
logistic loss, 135
logistic regression, 73, 114, 251
long short-term memory, 172

loss function, 98
Lp function, 151
Lp norm, 137
LSA, 142
LSTM, 172

machine learning, 2
manifold, 86
manifold learning, 15, 87
MAP estimation, 315
MAP rule, 224
margin, 109
marginal distribution, 31
marginal likelihood, 323
marginalization, 31
Markov assumption, 246
Markov chain model, 245
Markov random field, 344, 366

Boltzmann distribution, 367
clique, 366
conditional random field, 368
energy function, 367
maximum clique, 366
partition function, 367
potential function, 367
restricted Boltzmann machine, 370

matrix calculus, 25
matrix completion, 142
matrix factorization, 24, 74, 140
maximum a posteriori estimation, 315
maximum a posteriori rule, 224
maximum-entropy model, 254
maximum-likelihood classifier, 234
maximum-likelihood estimation, 231
maximum-marginal-likelihood estimation, 323
MCE, 113
MDL, 11
MDS, 88
mean, 28
mean field theory, 327
mediator, 348
Mercer’s condition, 124
meta-learning, 16

meta-learner, 16
minimum classification error, 113
minimum description length, 11
mixture model, 257, 261
ML, 231
MLE, 231



model space, 98
moments, 28
multiclass SVM, 127
multidimensional scaling, 88
multimodality, 257
multinomial distribution, 34
multinomial mixture model, 258
multinomial model, 243
multiplication rule of probability, 33
multivariate Gaussian distribution, 39
mutual information, 44

N-gram model, 249
naive Bayes classifier, 361
nearest neighbors, 13
neural networks, 75, 90, 151

attention, 162
attention function, 163
key, 163
query, 163
value matrix, 164

batch normalization, 160
convolution, 157, 180

kernel, 157
locality modelling, 158
weight sharing, 158

cross entropy, 175
error signal, 176
full connection, 156, 178
layer, 156
layer normalization, 160
max-pooling, 159, 184
mean-square error, 175
nonlinear activation, 158, 179
normalization, 159, 183
SGD, 189

epoch number, 190
initialization, 190
learning rate, 191
mini-batch size, 190

softmax, 159, 180
tapped delay line, 161
time-delayed feedback, 161
universal approximator, 154
weight decay, 194
weight normalization, 194

neuron, 152
Newton boosting, 211
Newton method, 63

no-free-lunch theorem, 11
nonlinear dimension reduction, 86, 90

manifold learning, 87
neural networks, 90

nonlinear SVM, 73, 123
nonlinear transformation, 21
nonparametric Bayesian method, 333

Dirichlet process, 333
Gaussian process, 333

nonparametric model, 7

Occam’s razor, 11
one-versus-all strategy, 127
one-versus-one strategy, 127
online learning, 17
optimization, 48

convex optimization, 50
equality constraint, 49
first-order method, 60
inequality constraint, 49
linear programming, 50
second-order method, 63
zero-order method, 59

output space, 97
overfitting, 8

p.d.f., 28
p.m.f., 27
parametric model, 7
PCA, 80
Pearson’s correlation coefficient, 79
perceptron, 108
plug-in MAP rule, 229
Poisson distribution, 377
Poisson regression, 251, 252
polynomial kernel, 124
positive definite matrix, 24
positive semidefinite matrix, 24
predictive distribution, 314
principal component, 80
principal component analysis, 80
prior probability, 223
prior specification, 313
probabilistic functions of Markov chains, 276
probabilistic PCA, 294, 296
probability density function, 28
probability distribution, 27
probability function, 27
probability mass function, 27
probit regression, 251, 252



product rule of probability, 33
product space, 30
projected gradient descent, 59, 127

QDA, 242
quadratic discriminant analysis, 242
quadratic programming, 126
quasi-Newton methods, 63

radial basis function, 124
random forests, 208
random variable, 27

transformation of random variables, 40
RBF kernel, 124
RBM, 370
recommendation, 141
rectified linear loss, 135
rectified linear unit, 153
recurrent neural networks, 170
regression, 4

curve fitting, 6
regularization, 10, 134
reinforcement learning, 15

deep Q-learning, 15
deep reinforcement learning, 15
Q-learning, 15

ReLU, 153
restricted Boltzmann machine, 370
ridge regression, 72, 139
RNN, 170
rule of sum in probability, 31

saddle point, 51
Sammon mapping, 88
self-attention, 172
semisupervised learning, 5
separation margin, 109
seq2seq, 198
sequence-to-sequence learning, 198
sequential Bayesian Learning, 315
sequential minimization optimization, 127, 131
SGD, 61, 62
shattering, 102
shrinkage, 215
sigmoid function, 114
sigmoid loss, 135
singular value decomposition, 24, 140
SMO, 127, 131
SNE, 89
soft margin, 121

soft SVM, 73, 121
softmax function, 115, 159
sparse representation learning, 145
sparse sampling, 146
square loss, 135
stationary point, 51
statistical data modeling, 229
steepest descent, 60
stochastic gradient descent, 61

mini-batch, 62
stochastic neighborhood embedding, 89
strong duality, 57
structured learning, 4
structured prediction, 4
sufficient statistics, 259
supervised learning, 5
support of a distribution, 34
support vector machine, 116
SVD, 24, 140
SVM, 116
symbolic approach, 2

expert system, 2
knowledge base, 1
rule, 1

t-SNE, 89
target function, 97
tensor, 20
text categorization, 254
tf-idf, 78
topic modeling, 74
transfer learning, 16
transformer, 172
tree boosting, 75

unconstrained optimization, 50
uncorrelated random variables, 32
underfitting, 8
undirected graphical model, 343, 366
uniform distribution, 377
unimodal model, 239
unimodality, 239
universal approximator, 154
unsupervised learning, 5

VAE, 294, 304
Vapnik–Chervonenkis dimension, 102
variance, 28
variational autoencoder, 294, 304
variational Bayesian method, 326



variational distribution, 327

VB, 326

VC dimension, 102

Viterbi algorithm, 279

token-passing algorithm, 280

Viterbi path, 279
von Mises–Fisher distribution, 379

weakly supervised learning, 5
weight decay, 194
weight sharing, 158
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